Properties

Label 12138.6493
Modulus $12138$
Conductor $2023$
Order $102$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(12138, base_ring=CyclotomicField(102)) M = H._module chi = DirichletCharacter(H, M([0,68,87]))
 
Copy content pari:[g,chi] = znchar(Mod(6493,12138))
 

Basic properties

Modulus: \(12138\)
Conductor: \(2023\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(102\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2023}(424,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 12138.cb

\(\chi_{12138}(67,\cdot)\) \(\chi_{12138}(373,\cdot)\) \(\chi_{12138}(781,\cdot)\) \(\chi_{12138}(1087,\cdot)\) \(\chi_{12138}(1495,\cdot)\) \(\chi_{12138}(1801,\cdot)\) \(\chi_{12138}(2209,\cdot)\) \(\chi_{12138}(2515,\cdot)\) \(\chi_{12138}(2923,\cdot)\) \(\chi_{12138}(3229,\cdot)\) \(\chi_{12138}(3637,\cdot)\) \(\chi_{12138}(3943,\cdot)\) \(\chi_{12138}(4351,\cdot)\) \(\chi_{12138}(4657,\cdot)\) \(\chi_{12138}(5065,\cdot)\) \(\chi_{12138}(5371,\cdot)\) \(\chi_{12138}(6085,\cdot)\) \(\chi_{12138}(6493,\cdot)\) \(\chi_{12138}(6799,\cdot)\) \(\chi_{12138}(7207,\cdot)\) \(\chi_{12138}(7921,\cdot)\) \(\chi_{12138}(8227,\cdot)\) \(\chi_{12138}(8635,\cdot)\) \(\chi_{12138}(8941,\cdot)\) \(\chi_{12138}(9349,\cdot)\) \(\chi_{12138}(9655,\cdot)\) \(\chi_{12138}(10063,\cdot)\) \(\chi_{12138}(10369,\cdot)\) \(\chi_{12138}(10777,\cdot)\) \(\chi_{12138}(11083,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{51})$
Fixed field: Number field defined by a degree 102 polynomial (not computed)

Values on generators

\((8093,10405,9829)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{29}{34}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 12138 }(6493, a) \) \(1\)\(1\)\(e\left(\frac{67}{102}\right)\)\(e\left(\frac{29}{102}\right)\)\(e\left(\frac{3}{17}\right)\)\(e\left(\frac{14}{51}\right)\)\(e\left(\frac{55}{102}\right)\)\(e\left(\frac{16}{51}\right)\)\(e\left(\frac{21}{34}\right)\)\(e\left(\frac{35}{102}\right)\)\(e\left(\frac{37}{102}\right)\)\(e\left(\frac{29}{34}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 12138 }(6493,a) \;\) at \(\;a = \) e.g. 2