sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1201, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1]))
pari:[g,chi] = znchar(Mod(1200,1201))
sage:kronecker_character(1201)
pari:znchartokronecker(g,chi)
\(\displaystyle\left(\frac{1201}{\bullet}\right)\)
| Modulus: | \(1201\) | |
| Conductor: | \(1201\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(2\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | yes |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1201}(1200,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(11\) → \(-1\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 1201 }(1200, a) \) |
\(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) |
sage:chi.jacobi_sum(n)