sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1156, base_ring=CyclotomicField(68))
M = H._module
chi = DirichletCharacter(H, M([34,33]))
pari:[g,chi] = znchar(Mod(999,1156))
Modulus: | \(1156\) | |
Conductor: | \(1156\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(68\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1156}(47,\cdot)\)
\(\chi_{1156}(55,\cdot)\)
\(\chi_{1156}(115,\cdot)\)
\(\chi_{1156}(123,\cdot)\)
\(\chi_{1156}(183,\cdot)\)
\(\chi_{1156}(191,\cdot)\)
\(\chi_{1156}(259,\cdot)\)
\(\chi_{1156}(319,\cdot)\)
\(\chi_{1156}(387,\cdot)\)
\(\chi_{1156}(395,\cdot)\)
\(\chi_{1156}(455,\cdot)\)
\(\chi_{1156}(463,\cdot)\)
\(\chi_{1156}(523,\cdot)\)
\(\chi_{1156}(531,\cdot)\)
\(\chi_{1156}(591,\cdot)\)
\(\chi_{1156}(599,\cdot)\)
\(\chi_{1156}(659,\cdot)\)
\(\chi_{1156}(667,\cdot)\)
\(\chi_{1156}(727,\cdot)\)
\(\chi_{1156}(735,\cdot)\)
\(\chi_{1156}(795,\cdot)\)
\(\chi_{1156}(803,\cdot)\)
\(\chi_{1156}(863,\cdot)\)
\(\chi_{1156}(871,\cdot)\)
\(\chi_{1156}(931,\cdot)\)
\(\chi_{1156}(939,\cdot)\)
\(\chi_{1156}(999,\cdot)\)
\(\chi_{1156}(1007,\cdot)\)
\(\chi_{1156}(1067,\cdot)\)
\(\chi_{1156}(1075,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((579,581)\) → \((-1,e\left(\frac{33}{68}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 1156 }(999, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{67}{68}\right)\) | \(e\left(\frac{9}{68}\right)\) | \(e\left(\frac{49}{68}\right)\) | \(e\left(\frac{33}{34}\right)\) | \(e\left(\frac{45}{68}\right)\) | \(e\left(\frac{2}{17}\right)\) | \(e\left(\frac{2}{17}\right)\) | \(e\left(\frac{5}{17}\right)\) | \(e\left(\frac{12}{17}\right)\) | \(e\left(\frac{49}{68}\right)\) |
sage:chi.jacobi_sum(n)