sage: H = DirichletGroup(1156)
pari: g = idealstar(,1156,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 544 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{272}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1156}(579,\cdot)$, $\chi_{1156}(581,\cdot)$ |
First 32 of 544 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(21\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1156}(1,\cdot)\) | 1156.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1156}(3,\cdot)\) | 1156.t | 272 | yes | \(1\) | \(1\) | \(e\left(\frac{137}{272}\right)\) | \(e\left(\frac{229}{272}\right)\) | \(e\left(\frac{19}{272}\right)\) | \(e\left(\frac{1}{136}\right)\) | \(e\left(\frac{159}{272}\right)\) | \(e\left(\frac{49}{68}\right)\) | \(e\left(\frac{47}{136}\right)\) | \(e\left(\frac{75}{136}\right)\) | \(e\left(\frac{39}{68}\right)\) | \(e\left(\frac{87}{272}\right)\) |
\(\chi_{1156}(5,\cdot)\) | 1156.s | 272 | no | \(-1\) | \(1\) | \(e\left(\frac{229}{272}\right)\) | \(e\left(\frac{217}{272}\right)\) | \(e\left(\frac{135}{272}\right)\) | \(e\left(\frac{93}{136}\right)\) | \(e\left(\frac{99}{272}\right)\) | \(e\left(\frac{1}{68}\right)\) | \(e\left(\frac{87}{136}\right)\) | \(e\left(\frac{107}{136}\right)\) | \(e\left(\frac{23}{68}\right)\) | \(e\left(\frac{203}{272}\right)\) |
\(\chi_{1156}(7,\cdot)\) | 1156.t | 272 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{272}\right)\) | \(e\left(\frac{135}{272}\right)\) | \(e\left(\frac{225}{272}\right)\) | \(e\left(\frac{19}{136}\right)\) | \(e\left(\frac{165}{272}\right)\) | \(e\left(\frac{47}{68}\right)\) | \(e\left(\frac{77}{136}\right)\) | \(e\left(\frac{65}{136}\right)\) | \(e\left(\frac{61}{68}\right)\) | \(e\left(\frac{157}{272}\right)\) |
\(\chi_{1156}(9,\cdot)\) | 1156.q | 136 | no | \(1\) | \(1\) | \(e\left(\frac{1}{136}\right)\) | \(e\left(\frac{93}{136}\right)\) | \(e\left(\frac{19}{136}\right)\) | \(e\left(\frac{1}{68}\right)\) | \(e\left(\frac{23}{136}\right)\) | \(e\left(\frac{15}{34}\right)\) | \(e\left(\frac{47}{68}\right)\) | \(e\left(\frac{7}{68}\right)\) | \(e\left(\frac{5}{34}\right)\) | \(e\left(\frac{87}{136}\right)\) |
\(\chi_{1156}(11,\cdot)\) | 1156.t | 272 | yes | \(1\) | \(1\) | \(e\left(\frac{159}{272}\right)\) | \(e\left(\frac{99}{272}\right)\) | \(e\left(\frac{165}{272}\right)\) | \(e\left(\frac{23}{136}\right)\) | \(e\left(\frac{121}{272}\right)\) | \(e\left(\frac{39}{68}\right)\) | \(e\left(\frac{129}{136}\right)\) | \(e\left(\frac{93}{136}\right)\) | \(e\left(\frac{13}{68}\right)\) | \(e\left(\frac{97}{272}\right)\) |
\(\chi_{1156}(13,\cdot)\) | 1156.p | 68 | no | \(1\) | \(1\) | \(e\left(\frac{49}{68}\right)\) | \(e\left(\frac{1}{68}\right)\) | \(e\left(\frac{47}{68}\right)\) | \(e\left(\frac{15}{34}\right)\) | \(e\left(\frac{39}{68}\right)\) | \(e\left(\frac{4}{17}\right)\) | \(e\left(\frac{25}{34}\right)\) | \(e\left(\frac{3}{34}\right)\) | \(e\left(\frac{7}{17}\right)\) | \(e\left(\frac{47}{68}\right)\) |
\(\chi_{1156}(15,\cdot)\) | 1156.r | 136 | yes | \(-1\) | \(1\) | \(e\left(\frac{47}{136}\right)\) | \(e\left(\frac{87}{136}\right)\) | \(e\left(\frac{77}{136}\right)\) | \(e\left(\frac{47}{68}\right)\) | \(e\left(\frac{129}{136}\right)\) | \(e\left(\frac{25}{34}\right)\) | \(e\left(\frac{67}{68}\right)\) | \(e\left(\frac{23}{68}\right)\) | \(e\left(\frac{31}{34}\right)\) | \(e\left(\frac{9}{136}\right)\) |
\(\chi_{1156}(19,\cdot)\) | 1156.r | 136 | yes | \(-1\) | \(1\) | \(e\left(\frac{75}{136}\right)\) | \(e\left(\frac{107}{136}\right)\) | \(e\left(\frac{65}{136}\right)\) | \(e\left(\frac{7}{68}\right)\) | \(e\left(\frac{93}{136}\right)\) | \(e\left(\frac{3}{34}\right)\) | \(e\left(\frac{23}{68}\right)\) | \(e\left(\frac{15}{68}\right)\) | \(e\left(\frac{1}{34}\right)\) | \(e\left(\frac{133}{136}\right)\) |
\(\chi_{1156}(21,\cdot)\) | 1156.p | 68 | no | \(1\) | \(1\) | \(e\left(\frac{39}{68}\right)\) | \(e\left(\frac{23}{68}\right)\) | \(e\left(\frac{61}{68}\right)\) | \(e\left(\frac{5}{34}\right)\) | \(e\left(\frac{13}{68}\right)\) | \(e\left(\frac{7}{17}\right)\) | \(e\left(\frac{31}{34}\right)\) | \(e\left(\frac{1}{34}\right)\) | \(e\left(\frac{8}{17}\right)\) | \(e\left(\frac{61}{68}\right)\) |
\(\chi_{1156}(23,\cdot)\) | 1156.t | 272 | yes | \(1\) | \(1\) | \(e\left(\frac{87}{272}\right)\) | \(e\left(\frac{203}{272}\right)\) | \(e\left(\frac{157}{272}\right)\) | \(e\left(\frac{87}{136}\right)\) | \(e\left(\frac{97}{272}\right)\) | \(e\left(\frac{47}{68}\right)\) | \(e\left(\frac{9}{136}\right)\) | \(e\left(\frac{133}{136}\right)\) | \(e\left(\frac{61}{68}\right)\) | \(e\left(\frac{89}{272}\right)\) |
\(\chi_{1156}(25,\cdot)\) | 1156.q | 136 | no | \(1\) | \(1\) | \(e\left(\frac{93}{136}\right)\) | \(e\left(\frac{81}{136}\right)\) | \(e\left(\frac{135}{136}\right)\) | \(e\left(\frac{25}{68}\right)\) | \(e\left(\frac{99}{136}\right)\) | \(e\left(\frac{1}{34}\right)\) | \(e\left(\frac{19}{68}\right)\) | \(e\left(\frac{39}{68}\right)\) | \(e\left(\frac{23}{34}\right)\) | \(e\left(\frac{67}{136}\right)\) |
\(\chi_{1156}(27,\cdot)\) | 1156.t | 272 | yes | \(1\) | \(1\) | \(e\left(\frac{139}{272}\right)\) | \(e\left(\frac{143}{272}\right)\) | \(e\left(\frac{57}{272}\right)\) | \(e\left(\frac{3}{136}\right)\) | \(e\left(\frac{205}{272}\right)\) | \(e\left(\frac{11}{68}\right)\) | \(e\left(\frac{5}{136}\right)\) | \(e\left(\frac{89}{136}\right)\) | \(e\left(\frac{49}{68}\right)\) | \(e\left(\frac{261}{272}\right)\) |
\(\chi_{1156}(29,\cdot)\) | 1156.s | 272 | no | \(-1\) | \(1\) | \(e\left(\frac{125}{272}\right)\) | \(e\left(\frac{65}{272}\right)\) | \(e\left(\frac{63}{272}\right)\) | \(e\left(\frac{125}{136}\right)\) | \(e\left(\frac{155}{272}\right)\) | \(e\left(\frac{5}{68}\right)\) | \(e\left(\frac{95}{136}\right)\) | \(e\left(\frac{59}{136}\right)\) | \(e\left(\frac{47}{68}\right)\) | \(e\left(\frac{131}{272}\right)\) |
\(\chi_{1156}(31,\cdot)\) | 1156.t | 272 | yes | \(1\) | \(1\) | \(e\left(\frac{145}{272}\right)\) | \(e\left(\frac{157}{272}\right)\) | \(e\left(\frac{171}{272}\right)\) | \(e\left(\frac{9}{136}\right)\) | \(e\left(\frac{71}{272}\right)\) | \(e\left(\frac{33}{68}\right)\) | \(e\left(\frac{15}{136}\right)\) | \(e\left(\frac{131}{136}\right)\) | \(e\left(\frac{11}{68}\right)\) | \(e\left(\frac{239}{272}\right)\) |
\(\chi_{1156}(33,\cdot)\) | 1156.n | 34 | no | \(1\) | \(1\) | \(e\left(\frac{3}{34}\right)\) | \(e\left(\frac{7}{34}\right)\) | \(e\left(\frac{23}{34}\right)\) | \(e\left(\frac{3}{17}\right)\) | \(e\left(\frac{1}{34}\right)\) | \(e\left(\frac{5}{17}\right)\) | \(e\left(\frac{5}{17}\right)\) | \(e\left(\frac{4}{17}\right)\) | \(e\left(\frac{13}{17}\right)\) | \(e\left(\frac{23}{34}\right)\) |
\(\chi_{1156}(35,\cdot)\) | 1156.m | 34 | yes | \(-1\) | \(1\) | \(e\left(\frac{31}{34}\right)\) | \(e\left(\frac{5}{17}\right)\) | \(e\left(\frac{11}{34}\right)\) | \(e\left(\frac{14}{17}\right)\) | \(e\left(\frac{33}{34}\right)\) | \(e\left(\frac{12}{17}\right)\) | \(e\left(\frac{7}{34}\right)\) | \(e\left(\frac{9}{34}\right)\) | \(e\left(\frac{4}{17}\right)\) | \(e\left(\frac{11}{34}\right)\) |
\(\chi_{1156}(37,\cdot)\) | 1156.s | 272 | no | \(-1\) | \(1\) | \(e\left(\frac{129}{272}\right)\) | \(e\left(\frac{165}{272}\right)\) | \(e\left(\frac{139}{272}\right)\) | \(e\left(\frac{129}{136}\right)\) | \(e\left(\frac{247}{272}\right)\) | \(e\left(\frac{65}{68}\right)\) | \(e\left(\frac{11}{136}\right)\) | \(e\left(\frac{87}{136}\right)\) | \(e\left(\frac{67}{68}\right)\) | \(e\left(\frac{207}{272}\right)\) |
\(\chi_{1156}(39,\cdot)\) | 1156.t | 272 | yes | \(1\) | \(1\) | \(e\left(\frac{61}{272}\right)\) | \(e\left(\frac{233}{272}\right)\) | \(e\left(\frac{207}{272}\right)\) | \(e\left(\frac{61}{136}\right)\) | \(e\left(\frac{43}{272}\right)\) | \(e\left(\frac{65}{68}\right)\) | \(e\left(\frac{11}{136}\right)\) | \(e\left(\frac{87}{136}\right)\) | \(e\left(\frac{67}{68}\right)\) | \(e\left(\frac{3}{272}\right)\) |
\(\chi_{1156}(41,\cdot)\) | 1156.s | 272 | no | \(-1\) | \(1\) | \(e\left(\frac{171}{272}\right)\) | \(e\left(\frac{263}{272}\right)\) | \(e\left(\frac{121}{272}\right)\) | \(e\left(\frac{35}{136}\right)\) | \(e\left(\frac{125}{272}\right)\) | \(e\left(\frac{15}{68}\right)\) | \(e\left(\frac{81}{136}\right)\) | \(e\left(\frac{109}{136}\right)\) | \(e\left(\frac{5}{68}\right)\) | \(e\left(\frac{53}{272}\right)\) |
\(\chi_{1156}(43,\cdot)\) | 1156.r | 136 | yes | \(-1\) | \(1\) | \(e\left(\frac{45}{136}\right)\) | \(e\left(\frac{37}{136}\right)\) | \(e\left(\frac{39}{136}\right)\) | \(e\left(\frac{45}{68}\right)\) | \(e\left(\frac{83}{136}\right)\) | \(e\left(\frac{29}{34}\right)\) | \(e\left(\frac{41}{68}\right)\) | \(e\left(\frac{9}{68}\right)\) | \(e\left(\frac{21}{34}\right)\) | \(e\left(\frac{107}{136}\right)\) |
\(\chi_{1156}(45,\cdot)\) | 1156.s | 272 | no | \(-1\) | \(1\) | \(e\left(\frac{231}{272}\right)\) | \(e\left(\frac{131}{272}\right)\) | \(e\left(\frac{173}{272}\right)\) | \(e\left(\frac{95}{136}\right)\) | \(e\left(\frac{145}{272}\right)\) | \(e\left(\frac{31}{68}\right)\) | \(e\left(\frac{45}{136}\right)\) | \(e\left(\frac{121}{136}\right)\) | \(e\left(\frac{33}{68}\right)\) | \(e\left(\frac{105}{272}\right)\) |
\(\chi_{1156}(47,\cdot)\) | 1156.o | 68 | yes | \(-1\) | \(1\) | \(e\left(\frac{59}{68}\right)\) | \(e\left(\frac{13}{68}\right)\) | \(e\left(\frac{33}{68}\right)\) | \(e\left(\frac{25}{34}\right)\) | \(e\left(\frac{65}{68}\right)\) | \(e\left(\frac{1}{17}\right)\) | \(e\left(\frac{1}{17}\right)\) | \(e\left(\frac{11}{17}\right)\) | \(e\left(\frac{6}{17}\right)\) | \(e\left(\frac{33}{68}\right)\) |
\(\chi_{1156}(49,\cdot)\) | 1156.q | 136 | no | \(1\) | \(1\) | \(e\left(\frac{19}{136}\right)\) | \(e\left(\frac{135}{136}\right)\) | \(e\left(\frac{89}{136}\right)\) | \(e\left(\frac{19}{68}\right)\) | \(e\left(\frac{29}{136}\right)\) | \(e\left(\frac{13}{34}\right)\) | \(e\left(\frac{9}{68}\right)\) | \(e\left(\frac{65}{68}\right)\) | \(e\left(\frac{27}{34}\right)\) | \(e\left(\frac{21}{136}\right)\) |
\(\chi_{1156}(53,\cdot)\) | 1156.q | 136 | no | \(1\) | \(1\) | \(e\left(\frac{103}{136}\right)\) | \(e\left(\frac{59}{136}\right)\) | \(e\left(\frac{53}{136}\right)\) | \(e\left(\frac{35}{68}\right)\) | \(e\left(\frac{57}{136}\right)\) | \(e\left(\frac{15}{34}\right)\) | \(e\left(\frac{13}{68}\right)\) | \(e\left(\frac{41}{68}\right)\) | \(e\left(\frac{5}{34}\right)\) | \(e\left(\frac{121}{136}\right)\) |
\(\chi_{1156}(55,\cdot)\) | 1156.o | 68 | yes | \(-1\) | \(1\) | \(e\left(\frac{29}{68}\right)\) | \(e\left(\frac{11}{68}\right)\) | \(e\left(\frac{7}{68}\right)\) | \(e\left(\frac{29}{34}\right)\) | \(e\left(\frac{55}{68}\right)\) | \(e\left(\frac{10}{17}\right)\) | \(e\left(\frac{10}{17}\right)\) | \(e\left(\frac{8}{17}\right)\) | \(e\left(\frac{9}{17}\right)\) | \(e\left(\frac{7}{68}\right)\) |
\(\chi_{1156}(57,\cdot)\) | 1156.s | 272 | no | \(-1\) | \(1\) | \(e\left(\frac{15}{272}\right)\) | \(e\left(\frac{171}{272}\right)\) | \(e\left(\frac{149}{272}\right)\) | \(e\left(\frac{15}{136}\right)\) | \(e\left(\frac{73}{272}\right)\) | \(e\left(\frac{55}{68}\right)\) | \(e\left(\frac{93}{136}\right)\) | \(e\left(\frac{105}{136}\right)\) | \(e\left(\frac{41}{68}\right)\) | \(e\left(\frac{81}{272}\right)\) |
\(\chi_{1156}(59,\cdot)\) | 1156.r | 136 | yes | \(-1\) | \(1\) | \(e\left(\frac{49}{136}\right)\) | \(e\left(\frac{1}{136}\right)\) | \(e\left(\frac{115}{136}\right)\) | \(e\left(\frac{49}{68}\right)\) | \(e\left(\frac{39}{136}\right)\) | \(e\left(\frac{21}{34}\right)\) | \(e\left(\frac{25}{68}\right)\) | \(e\left(\frac{37}{68}\right)\) | \(e\left(\frac{7}{34}\right)\) | \(e\left(\frac{47}{136}\right)\) |
\(\chi_{1156}(61,\cdot)\) | 1156.s | 272 | no | \(-1\) | \(1\) | \(e\left(\frac{259}{272}\right)\) | \(e\left(\frac{15}{272}\right)\) | \(e\left(\frac{161}{272}\right)\) | \(e\left(\frac{123}{136}\right)\) | \(e\left(\frac{245}{272}\right)\) | \(e\left(\frac{43}{68}\right)\) | \(e\left(\frac{1}{136}\right)\) | \(e\left(\frac{45}{136}\right)\) | \(e\left(\frac{37}{68}\right)\) | \(e\left(\frac{93}{272}\right)\) |
\(\chi_{1156}(63,\cdot)\) | 1156.t | 272 | yes | \(1\) | \(1\) | \(e\left(\frac{21}{272}\right)\) | \(e\left(\frac{49}{272}\right)\) | \(e\left(\frac{263}{272}\right)\) | \(e\left(\frac{21}{136}\right)\) | \(e\left(\frac{211}{272}\right)\) | \(e\left(\frac{9}{68}\right)\) | \(e\left(\frac{35}{136}\right)\) | \(e\left(\frac{79}{136}\right)\) | \(e\left(\frac{3}{68}\right)\) | \(e\left(\frac{59}{272}\right)\) |
\(\chi_{1156}(65,\cdot)\) | 1156.j | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{1156}(67,\cdot)\) | 1156.l | 34 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{17}\right)\) | \(e\left(\frac{31}{34}\right)\) | \(e\left(\frac{6}{17}\right)\) | \(e\left(\frac{6}{17}\right)\) | \(e\left(\frac{1}{17}\right)\) | \(e\left(\frac{10}{17}\right)\) | \(e\left(\frac{3}{34}\right)\) | \(e\left(\frac{33}{34}\right)\) | \(e\left(\frac{9}{17}\right)\) | \(e\left(\frac{6}{17}\right)\) |