sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1156, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([0,3]))
pari:[g,chi] = znchar(Mod(1001,1156))
\(\chi_{1156}(733,\cdot)\)
\(\chi_{1156}(757,\cdot)\)
\(\chi_{1156}(977,\cdot)\)
\(\chi_{1156}(1001,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((579,581)\) → \((1,e\left(\frac{3}{8}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(21\) | \(23\) |
| \( \chi_{ 1156 }(1001, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(i\) | \(i\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) |
sage:chi.jacobi_sum(n)