Properties

Label 11319.389
Modulus $11319$
Conductor $11319$
Order $1470$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11319, base_ring=CyclotomicField(1470)) M = H._module chi = DirichletCharacter(H, M([735,320,294]))
 
Copy content pari:[g,chi] = znchar(Mod(389,11319))
 

Basic properties

Modulus: \(11319\)
Conductor: \(11319\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(1470\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 11319.dp

\(\chi_{11319}(53,\cdot)\) \(\chi_{11319}(86,\cdot)\) \(\chi_{11319}(137,\cdot)\) \(\chi_{11319}(158,\cdot)\) \(\chi_{11319}(170,\cdot)\) \(\chi_{11319}(179,\cdot)\) \(\chi_{11319}(191,\cdot)\) \(\chi_{11319}(212,\cdot)\) \(\chi_{11319}(284,\cdot)\) \(\chi_{11319}(317,\cdot)\) \(\chi_{11319}(368,\cdot)\) \(\chi_{11319}(389,\cdot)\) \(\chi_{11319}(401,\cdot)\) \(\chi_{11319}(443,\cdot)\) \(\chi_{11319}(515,\cdot)\) \(\chi_{11319}(548,\cdot)\) \(\chi_{11319}(599,\cdot)\) \(\chi_{11319}(620,\cdot)\) \(\chi_{11319}(632,\cdot)\) \(\chi_{11319}(641,\cdot)\) \(\chi_{11319}(653,\cdot)\) \(\chi_{11319}(674,\cdot)\) \(\chi_{11319}(746,\cdot)\) \(\chi_{11319}(779,\cdot)\) \(\chi_{11319}(830,\cdot)\) \(\chi_{11319}(872,\cdot)\) \(\chi_{11319}(884,\cdot)\) \(\chi_{11319}(905,\cdot)\) \(\chi_{11319}(977,\cdot)\) \(\chi_{11319}(1061,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{735})$
Fixed field: Number field defined by a degree 1470 polynomial (not computed)

Values on generators

\((7547,3433,2059)\) → \((-1,e\left(\frac{32}{147}\right),e\left(\frac{1}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 11319 }(389, a) \) \(-1\)\(1\)\(e\left(\frac{1369}{1470}\right)\)\(e\left(\frac{634}{735}\right)\)\(e\left(\frac{901}{1470}\right)\)\(e\left(\frac{389}{490}\right)\)\(e\left(\frac{80}{147}\right)\)\(e\left(\frac{59}{245}\right)\)\(e\left(\frac{533}{735}\right)\)\(e\left(\frac{1091}{1470}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{233}{490}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 11319 }(389,a) \;\) at \(\;a = \) e.g. 2