sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11319, base_ring=CyclotomicField(1470))
M = H._module
chi = DirichletCharacter(H, M([735,650,1176]))
pari:[g,chi] = znchar(Mod(179,11319))
| Modulus: | \(11319\) | |
| Conductor: | \(11319\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(1470\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{11319}(53,\cdot)\)
\(\chi_{11319}(86,\cdot)\)
\(\chi_{11319}(137,\cdot)\)
\(\chi_{11319}(158,\cdot)\)
\(\chi_{11319}(170,\cdot)\)
\(\chi_{11319}(179,\cdot)\)
\(\chi_{11319}(191,\cdot)\)
\(\chi_{11319}(212,\cdot)\)
\(\chi_{11319}(284,\cdot)\)
\(\chi_{11319}(317,\cdot)\)
\(\chi_{11319}(368,\cdot)\)
\(\chi_{11319}(389,\cdot)\)
\(\chi_{11319}(401,\cdot)\)
\(\chi_{11319}(443,\cdot)\)
\(\chi_{11319}(515,\cdot)\)
\(\chi_{11319}(548,\cdot)\)
\(\chi_{11319}(599,\cdot)\)
\(\chi_{11319}(620,\cdot)\)
\(\chi_{11319}(632,\cdot)\)
\(\chi_{11319}(641,\cdot)\)
\(\chi_{11319}(653,\cdot)\)
\(\chi_{11319}(674,\cdot)\)
\(\chi_{11319}(746,\cdot)\)
\(\chi_{11319}(779,\cdot)\)
\(\chi_{11319}(830,\cdot)\)
\(\chi_{11319}(872,\cdot)\)
\(\chi_{11319}(884,\cdot)\)
\(\chi_{11319}(905,\cdot)\)
\(\chi_{11319}(977,\cdot)\)
\(\chi_{11319}(1061,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7547,3433,2059)\) → \((-1,e\left(\frac{65}{147}\right),e\left(\frac{4}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 11319 }(179, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{121}{1470}\right)\) | \(e\left(\frac{121}{735}\right)\) | \(e\left(\frac{769}{1470}\right)\) | \(e\left(\frac{121}{490}\right)\) | \(e\left(\frac{89}{147}\right)\) | \(e\left(\frac{201}{245}\right)\) | \(e\left(\frac{242}{735}\right)\) | \(e\left(\frac{1109}{1470}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{337}{490}\right)\) |
sage:chi.jacobi_sum(n)