Properties

Label 113.i
Modulus $113$
Conductor $113$
Order $56$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(113, base_ring=CyclotomicField(56)) M = H._module chi = DirichletCharacter(H, M([1])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(9,113)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(113\)
Conductor: \(113\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(56\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{56})$
Fixed field: Number field defined by a degree 56 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{113}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{9}{28}\right)\)
\(\chi_{113}(11,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{25}{28}\right)\)
\(\chi_{113}(13,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{15}{28}\right)\)
\(\chi_{113}(22,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{23}{28}\right)\)
\(\chi_{113}(25,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{19}{28}\right)\)
\(\chi_{113}(26,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{13}{28}\right)\)
\(\chi_{113}(31,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{1}{28}\right)\)
\(\chi_{113}(36,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{5}{28}\right)\)
\(\chi_{113}(41,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{3}{28}\right)\)
\(\chi_{113}(50,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{37}{56}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{17}{28}\right)\)
\(\chi_{113}(51,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{27}{28}\right)\)
\(\chi_{113}(52,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{1}{56}\right)\) \(e\left(\frac{11}{28}\right)\)
\(\chi_{113}(61,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{47}{56}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{11}{28}\right)\)
\(\chi_{113}(62,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{33}{56}\right)\) \(e\left(\frac{27}{28}\right)\)
\(\chi_{113}(63,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{17}{28}\right)\)
\(\chi_{113}(72,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{23}{56}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{3}{28}\right)\)
\(\chi_{113}(77,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{5}{28}\right)\)
\(\chi_{113}(82,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{53}{56}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{31}{56}\right)\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{51}{56}\right)\) \(e\left(\frac{1}{28}\right)\)
\(\chi_{113}(87,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{13}{28}\right)\)
\(\chi_{113}(88,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{43}{56}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{17}{56}\right)\) \(e\left(\frac{19}{28}\right)\)
\(\chi_{113}(91,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{13}{56}\right)\) \(e\left(\frac{27}{56}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{25}{56}\right)\) \(e\left(\frac{23}{28}\right)\)
\(\chi_{113}(100,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{39}{56}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{45}{56}\right)\) \(e\left(\frac{3}{56}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{15}{28}\right)\)
\(\chi_{113}(102,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{9}{56}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{19}{56}\right)\) \(e\left(\frac{5}{56}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{15}{56}\right)\) \(e\left(\frac{25}{28}\right)\)
\(\chi_{113}(104,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{29}{56}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{55}{56}\right)\) \(e\left(\frac{41}{56}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{11}{56}\right)\) \(e\left(\frac{9}{28}\right)\)