sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(113, base_ring=CyclotomicField(56))
M = H._module
chi = DirichletCharacter(H, M([47]))
pari:[g,chi] = znchar(Mod(41,113))
| Modulus: | \(113\) | |
| Conductor: | \(113\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(56\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{113}(9,\cdot)\)
\(\chi_{113}(11,\cdot)\)
\(\chi_{113}(13,\cdot)\)
\(\chi_{113}(22,\cdot)\)
\(\chi_{113}(25,\cdot)\)
\(\chi_{113}(26,\cdot)\)
\(\chi_{113}(31,\cdot)\)
\(\chi_{113}(36,\cdot)\)
\(\chi_{113}(41,\cdot)\)
\(\chi_{113}(50,\cdot)\)
\(\chi_{113}(51,\cdot)\)
\(\chi_{113}(52,\cdot)\)
\(\chi_{113}(61,\cdot)\)
\(\chi_{113}(62,\cdot)\)
\(\chi_{113}(63,\cdot)\)
\(\chi_{113}(72,\cdot)\)
\(\chi_{113}(77,\cdot)\)
\(\chi_{113}(82,\cdot)\)
\(\chi_{113}(87,\cdot)\)
\(\chi_{113}(88,\cdot)\)
\(\chi_{113}(91,\cdot)\)
\(\chi_{113}(100,\cdot)\)
\(\chi_{113}(102,\cdot)\)
\(\chi_{113}(104,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(3\) → \(e\left(\frac{47}{56}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 113 }(41, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{47}{56}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{37}{56}\right)\) | \(e\left(\frac{51}{56}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{41}{56}\right)\) | \(e\left(\frac{3}{28}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)