sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(109, base_ring=CyclotomicField(54))
M = H._module
chi = DirichletCharacter(H, M([32]))
pari:[g,chi] = znchar(Mod(48,109))
| Modulus: | \(109\) | |
| Conductor: | \(109\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(27\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{109}(3,\cdot)\)
\(\chi_{109}(5,\cdot)\)
\(\chi_{109}(7,\cdot)\)
\(\chi_{109}(9,\cdot)\)
\(\chi_{109}(15,\cdot)\)
\(\chi_{109}(21,\cdot)\)
\(\chi_{109}(22,\cdot)\)
\(\chi_{109}(25,\cdot)\)
\(\chi_{109}(26,\cdot)\)
\(\chi_{109}(35,\cdot)\)
\(\chi_{109}(48,\cdot)\)
\(\chi_{109}(49,\cdot)\)
\(\chi_{109}(73,\cdot)\)
\(\chi_{109}(78,\cdot)\)
\(\chi_{109}(80,\cdot)\)
\(\chi_{109}(81,\cdot)\)
\(\chi_{109}(89,\cdot)\)
\(\chi_{109}(97,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(6\) → \(e\left(\frac{16}{27}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 109 }(48, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{22}{27}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{27}\right)\) | \(e\left(\frac{16}{27}\right)\) | \(e\left(\frac{19}{27}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{27}\right)\) | \(e\left(\frac{22}{27}\right)\) | \(e\left(\frac{5}{27}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)