Properties

Label 10890.dc
Modulus $10890$
Conductor $1089$
Order $165$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10890, base_ring=CyclotomicField(330)) M = H._module chi = DirichletCharacter(H, M([110,0,258])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(31,10890)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(10890\)
Conductor: \(1089\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(165\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1089.bc
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{165})$
Fixed field: Number field defined by a degree 165 polynomial (not computed)

First 31 of 80 characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{10890}(31,\cdot)\) \(1\) \(1\) \(e\left(\frac{133}{165}\right)\) \(e\left(\frac{104}{165}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{103}{165}\right)\) \(e\left(\frac{149}{165}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{107}{165}\right)\) \(e\left(\frac{29}{33}\right)\)
\(\chi_{10890}(301,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{165}\right)\) \(e\left(\frac{8}{165}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{46}{165}\right)\) \(e\left(\frac{113}{165}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{59}{165}\right)\) \(e\left(\frac{20}{33}\right)\)
\(\chi_{10890}(421,\cdot)\) \(1\) \(1\) \(e\left(\frac{134}{165}\right)\) \(e\left(\frac{142}{165}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{74}{165}\right)\) \(e\left(\frac{67}{165}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{16}{165}\right)\) \(e\left(\frac{25}{33}\right)\)
\(\chi_{10890}(691,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{165}\right)\) \(e\left(\frac{34}{165}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{113}{165}\right)\) \(e\left(\frac{109}{165}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{127}{165}\right)\) \(e\left(\frac{19}{33}\right)\)
\(\chi_{10890}(751,\cdot)\) \(1\) \(1\) \(e\left(\frac{124}{165}\right)\) \(e\left(\frac{92}{165}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{34}{165}\right)\) \(e\left(\frac{62}{165}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{101}{165}\right)\) \(e\left(\frac{32}{33}\right)\)
\(\chi_{10890}(841,\cdot)\) \(1\) \(1\) \(e\left(\frac{82}{165}\right)\) \(e\left(\frac{146}{165}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{97}{165}\right)\) \(e\left(\frac{41}{165}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{128}{165}\right)\) \(e\left(\frac{2}{33}\right)\)
\(\chi_{10890}(961,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{165}\right)\) \(e\left(\frac{43}{165}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{41}{165}\right)\) \(e\left(\frac{133}{165}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{49}{165}\right)\) \(e\left(\frac{25}{33}\right)\)
\(\chi_{10890}(1021,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{165}\right)\) \(e\left(\frac{164}{165}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{118}{165}\right)\) \(e\left(\frac{89}{165}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{137}{165}\right)\) \(e\left(\frac{14}{33}\right)\)
\(\chi_{10890}(1411,\cdot)\) \(1\) \(1\) \(e\left(\frac{104}{165}\right)\) \(e\left(\frac{157}{165}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{119}{165}\right)\) \(e\left(\frac{52}{165}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{106}{165}\right)\) \(e\left(\frac{13}{33}\right)\)
\(\chi_{10890}(1501,\cdot)\) \(1\) \(1\) \(e\left(\frac{92}{165}\right)\) \(e\left(\frac{31}{165}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{137}{165}\right)\) \(e\left(\frac{46}{165}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{43}{165}\right)\) \(e\left(\frac{28}{33}\right)\)
\(\chi_{10890}(1681,\cdot)\) \(1\) \(1\) \(e\left(\frac{98}{165}\right)\) \(e\left(\frac{94}{165}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{128}{165}\right)\) \(e\left(\frac{49}{165}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{157}{165}\right)\) \(e\left(\frac{4}{33}\right)\)
\(\chi_{10890}(1741,\cdot)\) \(1\) \(1\) \(e\left(\frac{94}{165}\right)\) \(e\left(\frac{107}{165}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{79}{165}\right)\) \(e\left(\frac{47}{165}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{26}{165}\right)\) \(e\left(\frac{20}{33}\right)\)
\(\chi_{10890}(1831,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{165}\right)\) \(e\left(\frac{56}{165}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{157}{165}\right)\) \(e\left(\frac{131}{165}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{83}{165}\right)\) \(e\left(\frac{8}{33}\right)\)
\(\chi_{10890}(1951,\cdot)\) \(1\) \(1\) \(e\left(\frac{161}{165}\right)\) \(e\left(\frac{13}{165}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{116}{165}\right)\) \(e\left(\frac{163}{165}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{34}{165}\right)\) \(e\left(\frac{16}{33}\right)\)
\(\chi_{10890}(2011,\cdot)\) \(1\) \(1\) \(e\left(\frac{58}{165}\right)\) \(e\left(\frac{59}{165}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{133}{165}\right)\) \(e\left(\frac{29}{165}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{2}{165}\right)\) \(e\left(\frac{32}{33}\right)\)
\(\chi_{10890}(2281,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{165}\right)\) \(e\left(\frac{113}{165}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{31}{165}\right)\) \(e\left(\frac{8}{165}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{29}{165}\right)\) \(e\left(\frac{2}{33}\right)\)
\(\chi_{10890}(2401,\cdot)\) \(1\) \(1\) \(e\left(\frac{74}{165}\right)\) \(e\left(\frac{7}{165}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{164}{165}\right)\) \(e\left(\frac{37}{165}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{31}{165}\right)\) \(e\left(\frac{1}{33}\right)\)
\(\chi_{10890}(2491,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{165}\right)\) \(e\left(\frac{106}{165}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{32}{165}\right)\) \(e\left(\frac{136}{165}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{163}{165}\right)\) \(e\left(\frac{1}{33}\right)\)
\(\chi_{10890}(2731,\cdot)\) \(1\) \(1\) \(e\left(\frac{64}{165}\right)\) \(e\left(\frac{122}{165}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{124}{165}\right)\) \(e\left(\frac{32}{165}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{116}{165}\right)\) \(e\left(\frac{8}{33}\right)\)
\(\chi_{10890}(2821,\cdot)\) \(1\) \(1\) \(e\left(\frac{112}{165}\right)\) \(e\left(\frac{131}{165}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{52}{165}\right)\) \(e\left(\frac{56}{165}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{38}{165}\right)\) \(e\left(\frac{14}{33}\right)\)
\(\chi_{10890}(2941,\cdot)\) \(1\) \(1\) \(e\left(\frac{56}{165}\right)\) \(e\left(\frac{148}{165}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{26}{165}\right)\) \(e\left(\frac{28}{165}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{19}{165}\right)\) \(e\left(\frac{7}{33}\right)\)
\(\chi_{10890}(3001,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{165}\right)\) \(e\left(\frac{119}{165}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{148}{165}\right)\) \(e\left(\frac{134}{165}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{32}{165}\right)\) \(e\left(\frac{17}{33}\right)\)
\(\chi_{10890}(3271,\cdot)\) \(1\) \(1\) \(e\left(\frac{76}{165}\right)\) \(e\left(\frac{83}{165}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{106}{165}\right)\) \(e\left(\frac{38}{165}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{14}{165}\right)\) \(e\left(\frac{26}{33}\right)\)
\(\chi_{10890}(3481,\cdot)\) \(1\) \(1\) \(e\left(\frac{122}{165}\right)\) \(e\left(\frac{16}{165}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{92}{165}\right)\) \(e\left(\frac{61}{165}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{118}{165}\right)\) \(e\left(\frac{7}{33}\right)\)
\(\chi_{10890}(3661,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{165}\right)\) \(e\left(\frac{49}{165}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{158}{165}\right)\) \(e\left(\frac{94}{165}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{52}{165}\right)\) \(e\left(\frac{7}{33}\right)\)
\(\chi_{10890}(3721,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{165}\right)\) \(e\left(\frac{137}{165}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{4}{165}\right)\) \(e\left(\frac{17}{165}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{41}{165}\right)\) \(e\left(\frac{29}{33}\right)\)
\(\chi_{10890}(3811,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{165}\right)\) \(e\left(\frac{41}{165}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{112}{165}\right)\) \(e\left(\frac{146}{165}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{158}{165}\right)\) \(e\left(\frac{20}{33}\right)\)
\(\chi_{10890}(3931,\cdot)\) \(1\) \(1\) \(e\left(\frac{116}{165}\right)\) \(e\left(\frac{118}{165}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{101}{165}\right)\) \(e\left(\frac{58}{165}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{4}{165}\right)\) \(e\left(\frac{31}{33}\right)\)
\(\chi_{10890}(3991,\cdot)\) \(1\) \(1\) \(e\left(\frac{148}{165}\right)\) \(e\left(\frac{14}{165}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{163}{165}\right)\) \(e\left(\frac{74}{165}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{62}{165}\right)\) \(e\left(\frac{2}{33}\right)\)
\(\chi_{10890}(4261,\cdot)\) \(1\) \(1\) \(e\left(\frac{136}{165}\right)\) \(e\left(\frac{53}{165}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{16}{165}\right)\) \(e\left(\frac{68}{165}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{164}{165}\right)\) \(e\left(\frac{17}{33}\right)\)
\(\chi_{10890}(4381,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{165}\right)\) \(e\left(\frac{37}{165}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{89}{165}\right)\) \(e\left(\frac{7}{165}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{46}{165}\right)\) \(e\left(\frac{10}{33}\right)\)