Properties

Label 10890.3481
Modulus $10890$
Conductor $1089$
Order $165$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10890, base_ring=CyclotomicField(330)) M = H._module chi = DirichletCharacter(H, M([220,0,192]))
 
Copy content pari:[g,chi] = znchar(Mod(3481,10890))
 

Basic properties

Modulus: \(10890\)
Conductor: \(1089\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(165\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1089}(214,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 10890.dc

\(\chi_{10890}(31,\cdot)\) \(\chi_{10890}(301,\cdot)\) \(\chi_{10890}(421,\cdot)\) \(\chi_{10890}(691,\cdot)\) \(\chi_{10890}(751,\cdot)\) \(\chi_{10890}(841,\cdot)\) \(\chi_{10890}(961,\cdot)\) \(\chi_{10890}(1021,\cdot)\) \(\chi_{10890}(1411,\cdot)\) \(\chi_{10890}(1501,\cdot)\) \(\chi_{10890}(1681,\cdot)\) \(\chi_{10890}(1741,\cdot)\) \(\chi_{10890}(1831,\cdot)\) \(\chi_{10890}(1951,\cdot)\) \(\chi_{10890}(2011,\cdot)\) \(\chi_{10890}(2281,\cdot)\) \(\chi_{10890}(2401,\cdot)\) \(\chi_{10890}(2491,\cdot)\) \(\chi_{10890}(2731,\cdot)\) \(\chi_{10890}(2821,\cdot)\) \(\chi_{10890}(2941,\cdot)\) \(\chi_{10890}(3001,\cdot)\) \(\chi_{10890}(3271,\cdot)\) \(\chi_{10890}(3481,\cdot)\) \(\chi_{10890}(3661,\cdot)\) \(\chi_{10890}(3721,\cdot)\) \(\chi_{10890}(3811,\cdot)\) \(\chi_{10890}(3931,\cdot)\) \(\chi_{10890}(3991,\cdot)\) \(\chi_{10890}(4261,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{165})$
Fixed field: Number field defined by a degree 165 polynomial (not computed)

Values on generators

\((8471,4357,3511)\) → \((e\left(\frac{2}{3}\right),1,e\left(\frac{32}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 10890 }(3481, a) \) \(1\)\(1\)\(e\left(\frac{122}{165}\right)\)\(e\left(\frac{16}{165}\right)\)\(e\left(\frac{28}{55}\right)\)\(e\left(\frac{16}{55}\right)\)\(e\left(\frac{2}{33}\right)\)\(e\left(\frac{92}{165}\right)\)\(e\left(\frac{61}{165}\right)\)\(e\left(\frac{24}{55}\right)\)\(e\left(\frac{118}{165}\right)\)\(e\left(\frac{7}{33}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 10890 }(3481,a) \;\) at \(\;a = \) e.g. 2