Properties

Label 10890.cf
Modulus $10890$
Conductor $121$
Order $55$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10890, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,0,108])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(91,10890)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(10890\)
Conductor: \(121\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(55\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 121.g
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 55 polynomial

First 31 of 40 characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{10890}(91,\cdot)\) \(1\) \(1\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{10890}(181,\cdot)\) \(1\) \(1\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{10890}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{10890}(631,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{10890}(1081,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{10890}(1171,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{10890}(1351,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{10890}(1621,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{10890}(2071,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{10890}(2161,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{10890}(2341,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{10890}(2611,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{10890}(3061,\cdot)\) \(1\) \(1\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{10890}(3151,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{10890}(3331,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{10890}(3601,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{10890}(4051,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{10890}(4321,\cdot)\) \(1\) \(1\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{10890}(4591,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{10890}(5041,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{10890}(5131,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{10890}(5311,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{10890}(5581,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{10890}(6031,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{10890}(6121,\cdot)\) \(1\) \(1\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{10890}(6571,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{10890}(7111,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{10890}(7291,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{10890}(7561,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{10890}(8011,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{10890}(8101,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{8}{11}\right)\)