Properties

Label 10890.3151
Modulus $10890$
Conductor $121$
Order $55$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10890, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([0,0,74]))
 
Copy content pari:[g,chi] = znchar(Mod(3151,10890))
 

Basic properties

Modulus: \(10890\)
Conductor: \(121\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(55\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{121}(5,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 10890.cf

\(\chi_{10890}(91,\cdot)\) \(\chi_{10890}(181,\cdot)\) \(\chi_{10890}(361,\cdot)\) \(\chi_{10890}(631,\cdot)\) \(\chi_{10890}(1081,\cdot)\) \(\chi_{10890}(1171,\cdot)\) \(\chi_{10890}(1351,\cdot)\) \(\chi_{10890}(1621,\cdot)\) \(\chi_{10890}(2071,\cdot)\) \(\chi_{10890}(2161,\cdot)\) \(\chi_{10890}(2341,\cdot)\) \(\chi_{10890}(2611,\cdot)\) \(\chi_{10890}(3061,\cdot)\) \(\chi_{10890}(3151,\cdot)\) \(\chi_{10890}(3331,\cdot)\) \(\chi_{10890}(3601,\cdot)\) \(\chi_{10890}(4051,\cdot)\) \(\chi_{10890}(4321,\cdot)\) \(\chi_{10890}(4591,\cdot)\) \(\chi_{10890}(5041,\cdot)\) \(\chi_{10890}(5131,\cdot)\) \(\chi_{10890}(5311,\cdot)\) \(\chi_{10890}(5581,\cdot)\) \(\chi_{10890}(6031,\cdot)\) \(\chi_{10890}(6121,\cdot)\) \(\chi_{10890}(6571,\cdot)\) \(\chi_{10890}(7111,\cdot)\) \(\chi_{10890}(7291,\cdot)\) \(\chi_{10890}(7561,\cdot)\) \(\chi_{10890}(8011,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 55 polynomial

Values on generators

\((8471,4357,3511)\) → \((1,1,e\left(\frac{37}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 10890 }(3151, a) \) \(1\)\(1\)\(e\left(\frac{39}{55}\right)\)\(e\left(\frac{52}{55}\right)\)\(e\left(\frac{53}{55}\right)\)\(e\left(\frac{46}{55}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{24}{55}\right)\)\(e\left(\frac{47}{55}\right)\)\(e\left(\frac{14}{55}\right)\)\(e\left(\frac{26}{55}\right)\)\(e\left(\frac{9}{11}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 10890 }(3151,a) \;\) at \(\;a = \) e.g. 2