sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1089, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([220,42]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(412,1089))
         
     
    
  
   | Modulus: |  \(1089\) |   |  
   | Conductor: |  \(1089\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(165\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{1089}(4,\cdot)\)
  \(\chi_{1089}(16,\cdot)\)
  \(\chi_{1089}(25,\cdot)\)
  \(\chi_{1089}(31,\cdot)\)
  \(\chi_{1089}(49,\cdot)\)
  \(\chi_{1089}(58,\cdot)\)
  \(\chi_{1089}(70,\cdot)\)
  \(\chi_{1089}(97,\cdot)\)
  \(\chi_{1089}(103,\cdot)\)
  \(\chi_{1089}(115,\cdot)\)
  \(\chi_{1089}(157,\cdot)\)
  \(\chi_{1089}(169,\cdot)\)
  \(\chi_{1089}(196,\cdot)\)
  \(\chi_{1089}(214,\cdot)\)
  \(\chi_{1089}(223,\cdot)\)
  \(\chi_{1089}(229,\cdot)\)
  \(\chi_{1089}(247,\cdot)\)
  \(\chi_{1089}(256,\cdot)\)
  \(\chi_{1089}(268,\cdot)\)
  \(\chi_{1089}(295,\cdot)\)
  \(\chi_{1089}(301,\cdot)\)
  \(\chi_{1089}(313,\cdot)\)
  \(\chi_{1089}(322,\cdot)\)
  \(\chi_{1089}(328,\cdot)\)
  \(\chi_{1089}(346,\cdot)\)
  \(\chi_{1089}(355,\cdot)\)
  \(\chi_{1089}(367,\cdot)\)
  \(\chi_{1089}(394,\cdot)\)
  \(\chi_{1089}(400,\cdot)\)
  \(\chi_{1089}(412,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((848,244)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{7}{55}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |       
    
    
      | \( \chi_{ 1089 }(412, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{131}{165}\right)\) | \(e\left(\frac{97}{165}\right)\) | \(e\left(\frac{124}{165}\right)\) | \(e\left(\frac{92}{165}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{31}{165}\right)\) | \(e\left(\frac{58}{165}\right)\) | \(e\left(\frac{29}{165}\right)\) | \(e\left(\frac{13}{55}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)