sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1089, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([220,42]))
pari:[g,chi] = znchar(Mod(412,1089))
| Modulus: | \(1089\) | |
| Conductor: | \(1089\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(165\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1089}(4,\cdot)\)
\(\chi_{1089}(16,\cdot)\)
\(\chi_{1089}(25,\cdot)\)
\(\chi_{1089}(31,\cdot)\)
\(\chi_{1089}(49,\cdot)\)
\(\chi_{1089}(58,\cdot)\)
\(\chi_{1089}(70,\cdot)\)
\(\chi_{1089}(97,\cdot)\)
\(\chi_{1089}(103,\cdot)\)
\(\chi_{1089}(115,\cdot)\)
\(\chi_{1089}(157,\cdot)\)
\(\chi_{1089}(169,\cdot)\)
\(\chi_{1089}(196,\cdot)\)
\(\chi_{1089}(214,\cdot)\)
\(\chi_{1089}(223,\cdot)\)
\(\chi_{1089}(229,\cdot)\)
\(\chi_{1089}(247,\cdot)\)
\(\chi_{1089}(256,\cdot)\)
\(\chi_{1089}(268,\cdot)\)
\(\chi_{1089}(295,\cdot)\)
\(\chi_{1089}(301,\cdot)\)
\(\chi_{1089}(313,\cdot)\)
\(\chi_{1089}(322,\cdot)\)
\(\chi_{1089}(328,\cdot)\)
\(\chi_{1089}(346,\cdot)\)
\(\chi_{1089}(355,\cdot)\)
\(\chi_{1089}(367,\cdot)\)
\(\chi_{1089}(394,\cdot)\)
\(\chi_{1089}(400,\cdot)\)
\(\chi_{1089}(412,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((848,244)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{7}{55}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 1089 }(412, a) \) |
\(1\) | \(1\) | \(e\left(\frac{131}{165}\right)\) | \(e\left(\frac{97}{165}\right)\) | \(e\left(\frac{124}{165}\right)\) | \(e\left(\frac{92}{165}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{31}{165}\right)\) | \(e\left(\frac{58}{165}\right)\) | \(e\left(\frac{29}{165}\right)\) | \(e\left(\frac{13}{55}\right)\) |
sage:chi.jacobi_sum(n)