![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(101, base_ring=CyclotomicField(50))
M = H._module
chi = DirichletCharacter(H, M([44]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(101, base_ring=CyclotomicField(50))
M = H._module
chi = DirichletCharacter(H, M([44]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(92,101))
        pari:[g,chi] = znchar(Mod(92,101))
         
     
    
  
   | Modulus: | \(101\) |  | 
   | Conductor: | \(101\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(25\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{101}(5,\cdot)\)
  \(\chi_{101}(16,\cdot)\)
  \(\chi_{101}(19,\cdot)\)
  \(\chi_{101}(24,\cdot)\)
  \(\chi_{101}(25,\cdot)\)
  \(\chi_{101}(31,\cdot)\)
  \(\chi_{101}(37,\cdot)\)
  \(\chi_{101}(52,\cdot)\)
  \(\chi_{101}(54,\cdot)\)
  \(\chi_{101}(56,\cdot)\)
  \(\chi_{101}(58,\cdot)\)
  \(\chi_{101}(68,\cdot)\)
  \(\chi_{101}(71,\cdot)\)
  \(\chi_{101}(78,\cdot)\)
  \(\chi_{101}(79,\cdot)\)
  \(\chi_{101}(80,\cdot)\)
  \(\chi_{101}(81,\cdot)\)
  \(\chi_{101}(88,\cdot)\)
  \(\chi_{101}(92,\cdot)\)
  \(\chi_{101}(97,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\(2\) → \(e\left(\frac{22}{25}\right)\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) | 
    
    
      | \( \chi_{ 101 }(92, a) \) | \(1\) | \(1\) | \(e\left(\frac{22}{25}\right)\) | \(e\left(\frac{18}{25}\right)\) | \(e\left(\frac{19}{25}\right)\) | \(e\left(\frac{3}{25}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{23}{25}\right)\) | \(e\left(\frac{16}{25}\right)\) | \(e\left(\frac{11}{25}\right)\) | \(1\) | \(e\left(\frac{11}{25}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)