sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1008, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,3,6,10]))
pari:[g,chi] = znchar(Mod(971,1008))
\(\chi_{1008}(395,\cdot)\)
\(\chi_{1008}(467,\cdot)\)
\(\chi_{1008}(899,\cdot)\)
\(\chi_{1008}(971,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((127,757,785,577)\) → \((-1,i,-1,e\left(\frac{5}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 1008 }(971, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) |
sage:chi.jacobi_sum(n)