# Properties

 Modulus $1008$ Structure $$C_{12}\times C_{6}\times C_{2}\times C_{2}$$ Order $288$

Show commands: Pari/GP / SageMath

sage: H = DirichletGroup(1008)

pari: g = idealstar(,1008,2)

## Character group

 sage: G.order()  pari: g.no Order = 288 sage: H.invariants()  pari: g.cyc Structure = $$C_{12}\times C_{6}\times C_{2}\times C_{2}$$ sage: H.gens()  pari: g.gen Generators = $\chi_{1008}(127,\cdot)$, $\chi_{1008}(757,\cdot)$, $\chi_{1008}(785,\cdot)$, $\chi_{1008}(577,\cdot)$

## First 32 of 288 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive $$-1$$ $$1$$ $$5$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$37$$
$$\chi_{1008}(1,\cdot)$$ 1008.a 1 no $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
$$\chi_{1008}(5,\cdot)$$ 1008.dr 12 yes $$1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-1$$ $$e\left(\frac{11}{12}\right)$$
$$\chi_{1008}(11,\cdot)$$ 1008.eh 12 yes $$1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$-1$$ $$e\left(\frac{7}{12}\right)$$
$$\chi_{1008}(13,\cdot)$$ 1008.dn 12 yes $$-1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$-1$$ $$-i$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-i$$
$$\chi_{1008}(17,\cdot)$$ 1008.bt 6 no $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{1008}(19,\cdot)$$ 1008.ec 12 no $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-i$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{12}\right)$$
$$\chi_{1008}(23,\cdot)$$ 1008.cb 6 no $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{1008}(25,\cdot)$$ 1008.cy 6 no $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{1008}(29,\cdot)$$ 1008.dl 12 no $$-1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-1$$ $$i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-i$$
$$\chi_{1008}(31,\cdot)$$ 1008.bf 6 no $$1$$ $$1$$ $$-1$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{1008}(37,\cdot)$$ 1008.du 12 no $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$
$$\chi_{1008}(41,\cdot)$$ 1008.ck 6 no $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$
$$\chi_{1008}(43,\cdot)$$ 1008.en 12 no $$-1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$1$$ $$i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$
$$\chi_{1008}(47,\cdot)$$ 1008.di 6 no $$-1$$ $$1$$ $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{1008}(53,\cdot)$$ 1008.ed 12 no $$-1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$-i$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$i$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{7}{12}\right)$$
$$\chi_{1008}(55,\cdot)$$ 1008.p 2 no $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$
$$\chi_{1008}(59,\cdot)$$ 1008.dp 12 yes $$-1$$ $$1$$ $$i$$ $$i$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$-1$$ $$-1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{7}{12}\right)$$
$$\chi_{1008}(61,\cdot)$$ 1008.eb 12 yes $$-1$$ $$1$$ $$i$$ $$-i$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$-1$$ $$-1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$
$$\chi_{1008}(65,\cdot)$$ 1008.bd 6 no $$-1$$ $$1$$ $$-1$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{1008}(67,\cdot)$$ 1008.dz 12 yes $$-1$$ $$1$$ $$-i$$ $$i$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$1$$ $$-1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$
$$\chi_{1008}(71,\cdot)$$ 1008.j 2 no $$1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$-1$$
$$\chi_{1008}(73,\cdot)$$ 1008.ce 6 no $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{1008}(79,\cdot)$$ 1008.dd 6 no $$-1$$ $$1$$ $$1$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{1008}(83,\cdot)$$ 1008.ep 12 yes $$-1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$1$$ $$i$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-i$$
$$\chi_{1008}(85,\cdot)$$ 1008.eo 12 no $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$1$$ $$-i$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$i$$
$$\chi_{1008}(89,\cdot)$$ 1008.cp 6 no $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{1008}(95,\cdot)$$ 1008.bh 6 no $$1$$ $$1$$ $$-1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{1008}(97,\cdot)$$ 1008.cl 6 no $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$
$$\chi_{1008}(101,\cdot)$$ 1008.dr 12 yes $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$-1$$ $$e\left(\frac{7}{12}\right)$$
$$\chi_{1008}(103,\cdot)$$ 1008.bn 6 no $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{1008}(107,\cdot)$$ 1008.ei 12 no $$1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-i$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$
$$\chi_{1008}(109,\cdot)$$ 1008.du 12 no $$1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$i$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$i$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$