Properties

Label 10002.m
Modulus $10002$
Conductor $1667$
Order $49$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10002, base_ring=CyclotomicField(98)) M = H._module chi = DirichletCharacter(H, M([0,22])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(13,10002)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(10002\)
Conductor: \(1667\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(49\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1667.g
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{49})$
Fixed field: Number field defined by a degree 49 polynomial

First 31 of 42 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{10002}(13,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{49}\right)\) \(e\left(\frac{22}{49}\right)\) \(e\left(\frac{47}{49}\right)\) \(e\left(\frac{47}{49}\right)\) \(e\left(\frac{43}{49}\right)\) \(e\left(\frac{22}{49}\right)\) \(e\left(\frac{11}{49}\right)\) \(e\left(\frac{8}{49}\right)\) \(e\left(\frac{34}{49}\right)\) \(e\left(\frac{31}{49}\right)\)
\(\chi_{10002}(169,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{49}\right)\) \(e\left(\frac{44}{49}\right)\) \(e\left(\frac{45}{49}\right)\) \(e\left(\frac{45}{49}\right)\) \(e\left(\frac{37}{49}\right)\) \(e\left(\frac{44}{49}\right)\) \(e\left(\frac{22}{49}\right)\) \(e\left(\frac{16}{49}\right)\) \(e\left(\frac{19}{49}\right)\) \(e\left(\frac{13}{49}\right)\)
\(\chi_{10002}(181,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{49}\right)\) \(e\left(\frac{13}{49}\right)\) \(e\left(\frac{30}{49}\right)\) \(e\left(\frac{30}{49}\right)\) \(e\left(\frac{41}{49}\right)\) \(e\left(\frac{13}{49}\right)\) \(e\left(\frac{31}{49}\right)\) \(e\left(\frac{27}{49}\right)\) \(e\left(\frac{29}{49}\right)\) \(e\left(\frac{25}{49}\right)\)
\(\chi_{10002}(397,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{49}\right)\) \(e\left(\frac{15}{49}\right)\) \(e\left(\frac{12}{49}\right)\) \(e\left(\frac{12}{49}\right)\) \(e\left(\frac{36}{49}\right)\) \(e\left(\frac{15}{49}\right)\) \(e\left(\frac{32}{49}\right)\) \(e\left(\frac{1}{49}\right)\) \(e\left(\frac{41}{49}\right)\) \(e\left(\frac{10}{49}\right)\)
\(\chi_{10002}(535,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{49}\right)\) \(e\left(\frac{20}{49}\right)\) \(e\left(\frac{16}{49}\right)\) \(e\left(\frac{16}{49}\right)\) \(e\left(\frac{48}{49}\right)\) \(e\left(\frac{20}{49}\right)\) \(e\left(\frac{10}{49}\right)\) \(e\left(\frac{34}{49}\right)\) \(e\left(\frac{22}{49}\right)\) \(e\left(\frac{46}{49}\right)\)
\(\chi_{10002}(583,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{49}\right)\) \(e\left(\frac{8}{49}\right)\) \(e\left(\frac{26}{49}\right)\) \(e\left(\frac{26}{49}\right)\) \(e\left(\frac{29}{49}\right)\) \(e\left(\frac{8}{49}\right)\) \(e\left(\frac{4}{49}\right)\) \(e\left(\frac{43}{49}\right)\) \(e\left(\frac{48}{49}\right)\) \(e\left(\frac{38}{49}\right)\)
\(\chi_{10002}(595,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{49}\right)\) \(e\left(\frac{25}{49}\right)\) \(e\left(\frac{20}{49}\right)\) \(e\left(\frac{20}{49}\right)\) \(e\left(\frac{11}{49}\right)\) \(e\left(\frac{25}{49}\right)\) \(e\left(\frac{37}{49}\right)\) \(e\left(\frac{18}{49}\right)\) \(e\left(\frac{3}{49}\right)\) \(e\left(\frac{33}{49}\right)\)
\(\chi_{10002}(1219,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{49}\right)\) \(e\left(\frac{12}{49}\right)\) \(e\left(\frac{39}{49}\right)\) \(e\left(\frac{39}{49}\right)\) \(e\left(\frac{19}{49}\right)\) \(e\left(\frac{12}{49}\right)\) \(e\left(\frac{6}{49}\right)\) \(e\left(\frac{40}{49}\right)\) \(e\left(\frac{23}{49}\right)\) \(e\left(\frac{8}{49}\right)\)
\(\chi_{10002}(1405,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{49}\right)\) \(e\left(\frac{23}{49}\right)\) \(e\left(\frac{38}{49}\right)\) \(e\left(\frac{38}{49}\right)\) \(e\left(\frac{16}{49}\right)\) \(e\left(\frac{23}{49}\right)\) \(e\left(\frac{36}{49}\right)\) \(e\left(\frac{44}{49}\right)\) \(e\left(\frac{40}{49}\right)\) \(e\left(\frac{48}{49}\right)\)
\(\chi_{10002}(1525,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{49}\right)\) \(e\left(\frac{43}{49}\right)\) \(e\left(\frac{5}{49}\right)\) \(e\left(\frac{5}{49}\right)\) \(e\left(\frac{15}{49}\right)\) \(e\left(\frac{43}{49}\right)\) \(e\left(\frac{46}{49}\right)\) \(e\left(\frac{29}{49}\right)\) \(e\left(\frac{13}{49}\right)\) \(e\left(\frac{45}{49}\right)\)
\(\chi_{10002}(2035,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{49}\right)\) \(e\left(\frac{32}{49}\right)\) \(e\left(\frac{6}{49}\right)\) \(e\left(\frac{6}{49}\right)\) \(e\left(\frac{18}{49}\right)\) \(e\left(\frac{32}{49}\right)\) \(e\left(\frac{16}{49}\right)\) \(e\left(\frac{25}{49}\right)\) \(e\left(\frac{45}{49}\right)\) \(e\left(\frac{5}{49}\right)\)
\(\chi_{10002}(2197,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{49}\right)\) \(e\left(\frac{17}{49}\right)\) \(e\left(\frac{43}{49}\right)\) \(e\left(\frac{43}{49}\right)\) \(e\left(\frac{31}{49}\right)\) \(e\left(\frac{17}{49}\right)\) \(e\left(\frac{33}{49}\right)\) \(e\left(\frac{24}{49}\right)\) \(e\left(\frac{4}{49}\right)\) \(e\left(\frac{44}{49}\right)\)
\(\chi_{10002}(2755,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{49}\right)\) \(e\left(\frac{26}{49}\right)\) \(e\left(\frac{11}{49}\right)\) \(e\left(\frac{11}{49}\right)\) \(e\left(\frac{33}{49}\right)\) \(e\left(\frac{26}{49}\right)\) \(e\left(\frac{13}{49}\right)\) \(e\left(\frac{5}{49}\right)\) \(e\left(\frac{9}{49}\right)\) \(e\left(\frac{1}{49}\right)\)
\(\chi_{10002}(3517,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{49}\right)\) \(e\left(\frac{41}{49}\right)\) \(e\left(\frac{23}{49}\right)\) \(e\left(\frac{23}{49}\right)\) \(e\left(\frac{20}{49}\right)\) \(e\left(\frac{41}{49}\right)\) \(e\left(\frac{45}{49}\right)\) \(e\left(\frac{6}{49}\right)\) \(e\left(\frac{1}{49}\right)\) \(e\left(\frac{11}{49}\right)\)
\(\chi_{10002}(3631,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{49}\right)\) \(e\left(\frac{46}{49}\right)\) \(e\left(\frac{27}{49}\right)\) \(e\left(\frac{27}{49}\right)\) \(e\left(\frac{32}{49}\right)\) \(e\left(\frac{46}{49}\right)\) \(e\left(\frac{23}{49}\right)\) \(e\left(\frac{39}{49}\right)\) \(e\left(\frac{31}{49}\right)\) \(e\left(\frac{47}{49}\right)\)
\(\chi_{10002}(3847,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{49}\right)\) \(e\left(\frac{27}{49}\right)\) \(e\left(\frac{2}{49}\right)\) \(e\left(\frac{2}{49}\right)\) \(e\left(\frac{6}{49}\right)\) \(e\left(\frac{27}{49}\right)\) \(e\left(\frac{38}{49}\right)\) \(e\left(\frac{41}{49}\right)\) \(e\left(\frac{15}{49}\right)\) \(e\left(\frac{18}{49}\right)\)
\(\chi_{10002}(3955,\cdot)\) \(1\) \(1\) \(e\left(\frac{18}{49}\right)\) \(e\left(\frac{1}{49}\right)\) \(e\left(\frac{40}{49}\right)\) \(e\left(\frac{40}{49}\right)\) \(e\left(\frac{22}{49}\right)\) \(e\left(\frac{1}{49}\right)\) \(e\left(\frac{25}{49}\right)\) \(e\left(\frac{36}{49}\right)\) \(e\left(\frac{6}{49}\right)\) \(e\left(\frac{17}{49}\right)\)
\(\chi_{10002}(4255,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{49}\right)\) \(e\left(\frac{36}{49}\right)\) \(e\left(\frac{19}{49}\right)\) \(e\left(\frac{19}{49}\right)\) \(e\left(\frac{8}{49}\right)\) \(e\left(\frac{36}{49}\right)\) \(e\left(\frac{18}{49}\right)\) \(e\left(\frac{22}{49}\right)\) \(e\left(\frac{20}{49}\right)\) \(e\left(\frac{24}{49}\right)\)
\(\chi_{10002}(5161,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{49}\right)\) \(e\left(\frac{37}{49}\right)\) \(e\left(\frac{10}{49}\right)\) \(e\left(\frac{10}{49}\right)\) \(e\left(\frac{30}{49}\right)\) \(e\left(\frac{37}{49}\right)\) \(e\left(\frac{43}{49}\right)\) \(e\left(\frac{9}{49}\right)\) \(e\left(\frac{26}{49}\right)\) \(e\left(\frac{41}{49}\right)\)
\(\chi_{10002}(5305,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{49}\right)\) \(e\left(\frac{9}{49}\right)\) \(e\left(\frac{17}{49}\right)\) \(e\left(\frac{17}{49}\right)\) \(e\left(\frac{2}{49}\right)\) \(e\left(\frac{9}{49}\right)\) \(e\left(\frac{29}{49}\right)\) \(e\left(\frac{30}{49}\right)\) \(e\left(\frac{5}{49}\right)\) \(e\left(\frac{6}{49}\right)\)
\(\chi_{10002}(5665,\cdot)\) \(1\) \(1\) \(e\left(\frac{40}{49}\right)\) \(e\left(\frac{24}{49}\right)\) \(e\left(\frac{29}{49}\right)\) \(e\left(\frac{29}{49}\right)\) \(e\left(\frac{38}{49}\right)\) \(e\left(\frac{24}{49}\right)\) \(e\left(\frac{12}{49}\right)\) \(e\left(\frac{31}{49}\right)\) \(e\left(\frac{46}{49}\right)\) \(e\left(\frac{16}{49}\right)\)
\(\chi_{10002}(5809,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{49}\right)\) \(e\left(\frac{48}{49}\right)\) \(e\left(\frac{9}{49}\right)\) \(e\left(\frac{9}{49}\right)\) \(e\left(\frac{27}{49}\right)\) \(e\left(\frac{48}{49}\right)\) \(e\left(\frac{24}{49}\right)\) \(e\left(\frac{13}{49}\right)\) \(e\left(\frac{43}{49}\right)\) \(e\left(\frac{32}{49}\right)\)
\(\chi_{10002}(5845,\cdot)\) \(1\) \(1\) \(e\left(\frac{24}{49}\right)\) \(e\left(\frac{34}{49}\right)\) \(e\left(\frac{37}{49}\right)\) \(e\left(\frac{37}{49}\right)\) \(e\left(\frac{13}{49}\right)\) \(e\left(\frac{34}{49}\right)\) \(e\left(\frac{17}{49}\right)\) \(e\left(\frac{48}{49}\right)\) \(e\left(\frac{8}{49}\right)\) \(e\left(\frac{39}{49}\right)\)
\(\chi_{10002}(6169,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{49}\right)\) \(e\left(\frac{40}{49}\right)\) \(e\left(\frac{32}{49}\right)\) \(e\left(\frac{32}{49}\right)\) \(e\left(\frac{47}{49}\right)\) \(e\left(\frac{40}{49}\right)\) \(e\left(\frac{20}{49}\right)\) \(e\left(\frac{19}{49}\right)\) \(e\left(\frac{44}{49}\right)\) \(e\left(\frac{43}{49}\right)\)
\(\chi_{10002}(6367,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{49}\right)\) \(e\left(\frac{4}{49}\right)\) \(e\left(\frac{13}{49}\right)\) \(e\left(\frac{13}{49}\right)\) \(e\left(\frac{39}{49}\right)\) \(e\left(\frac{4}{49}\right)\) \(e\left(\frac{2}{49}\right)\) \(e\left(\frac{46}{49}\right)\) \(e\left(\frac{24}{49}\right)\) \(e\left(\frac{19}{49}\right)\)
\(\chi_{10002}(6451,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{49}\right)\) \(e\left(\frac{5}{49}\right)\) \(e\left(\frac{4}{49}\right)\) \(e\left(\frac{4}{49}\right)\) \(e\left(\frac{12}{49}\right)\) \(e\left(\frac{5}{49}\right)\) \(e\left(\frac{27}{49}\right)\) \(e\left(\frac{33}{49}\right)\) \(e\left(\frac{30}{49}\right)\) \(e\left(\frac{36}{49}\right)\)
\(\chi_{10002}(6817,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{49}\right)\) \(e\left(\frac{33}{49}\right)\) \(e\left(\frac{46}{49}\right)\) \(e\left(\frac{46}{49}\right)\) \(e\left(\frac{40}{49}\right)\) \(e\left(\frac{33}{49}\right)\) \(e\left(\frac{41}{49}\right)\) \(e\left(\frac{12}{49}\right)\) \(e\left(\frac{2}{49}\right)\) \(e\left(\frac{22}{49}\right)\)
\(\chi_{10002}(7081,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{49}\right)\) \(e\left(\frac{10}{49}\right)\) \(e\left(\frac{8}{49}\right)\) \(e\left(\frac{8}{49}\right)\) \(e\left(\frac{24}{49}\right)\) \(e\left(\frac{10}{49}\right)\) \(e\left(\frac{5}{49}\right)\) \(e\left(\frac{17}{49}\right)\) \(e\left(\frac{11}{49}\right)\) \(e\left(\frac{23}{49}\right)\)
\(\chi_{10002}(7195,\cdot)\) \(1\) \(1\) \(e\left(\frac{48}{49}\right)\) \(e\left(\frac{19}{49}\right)\) \(e\left(\frac{25}{49}\right)\) \(e\left(\frac{25}{49}\right)\) \(e\left(\frac{26}{49}\right)\) \(e\left(\frac{19}{49}\right)\) \(e\left(\frac{34}{49}\right)\) \(e\left(\frac{47}{49}\right)\) \(e\left(\frac{16}{49}\right)\) \(e\left(\frac{29}{49}\right)\)
\(\chi_{10002}(7399,\cdot)\) \(1\) \(1\) \(e\left(\frac{30}{49}\right)\) \(e\left(\frac{18}{49}\right)\) \(e\left(\frac{34}{49}\right)\) \(e\left(\frac{34}{49}\right)\) \(e\left(\frac{4}{49}\right)\) \(e\left(\frac{18}{49}\right)\) \(e\left(\frac{9}{49}\right)\) \(e\left(\frac{11}{49}\right)\) \(e\left(\frac{10}{49}\right)\) \(e\left(\frac{12}{49}\right)\)
\(\chi_{10002}(7579,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{49}\right)\) \(e\left(\frac{30}{49}\right)\) \(e\left(\frac{24}{49}\right)\) \(e\left(\frac{24}{49}\right)\) \(e\left(\frac{23}{49}\right)\) \(e\left(\frac{30}{49}\right)\) \(e\left(\frac{15}{49}\right)\) \(e\left(\frac{2}{49}\right)\) \(e\left(\frac{33}{49}\right)\) \(e\left(\frac{20}{49}\right)\)