Properties

Label 10002.5665
Modulus $10002$
Conductor $1667$
Order $49$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10002, base_ring=CyclotomicField(98)) M = H._module chi = DirichletCharacter(H, M([0,24]))
 
Copy content pari:[g,chi] = znchar(Mod(5665,10002))
 

Basic properties

Modulus: \(10002\)
Conductor: \(1667\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(49\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1667}(664,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 10002.m

\(\chi_{10002}(13,\cdot)\) \(\chi_{10002}(169,\cdot)\) \(\chi_{10002}(181,\cdot)\) \(\chi_{10002}(397,\cdot)\) \(\chi_{10002}(535,\cdot)\) \(\chi_{10002}(583,\cdot)\) \(\chi_{10002}(595,\cdot)\) \(\chi_{10002}(1219,\cdot)\) \(\chi_{10002}(1405,\cdot)\) \(\chi_{10002}(1525,\cdot)\) \(\chi_{10002}(2035,\cdot)\) \(\chi_{10002}(2197,\cdot)\) \(\chi_{10002}(2755,\cdot)\) \(\chi_{10002}(3517,\cdot)\) \(\chi_{10002}(3631,\cdot)\) \(\chi_{10002}(3847,\cdot)\) \(\chi_{10002}(3955,\cdot)\) \(\chi_{10002}(4255,\cdot)\) \(\chi_{10002}(5161,\cdot)\) \(\chi_{10002}(5305,\cdot)\) \(\chi_{10002}(5665,\cdot)\) \(\chi_{10002}(5809,\cdot)\) \(\chi_{10002}(5845,\cdot)\) \(\chi_{10002}(6169,\cdot)\) \(\chi_{10002}(6367,\cdot)\) \(\chi_{10002}(6451,\cdot)\) \(\chi_{10002}(6817,\cdot)\) \(\chi_{10002}(7081,\cdot)\) \(\chi_{10002}(7195,\cdot)\) \(\chi_{10002}(7399,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{49})$
Fixed field: Number field defined by a degree 49 polynomial

Values on generators

\((3335,1669)\) → \((1,e\left(\frac{12}{49}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 10002 }(5665, a) \) \(1\)\(1\)\(e\left(\frac{40}{49}\right)\)\(e\left(\frac{24}{49}\right)\)\(e\left(\frac{29}{49}\right)\)\(e\left(\frac{29}{49}\right)\)\(e\left(\frac{38}{49}\right)\)\(e\left(\frac{24}{49}\right)\)\(e\left(\frac{12}{49}\right)\)\(e\left(\frac{31}{49}\right)\)\(e\left(\frac{46}{49}\right)\)\(e\left(\frac{16}{49}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 10002 }(5665,a) \;\) at \(\;a = \) e.g. 2