sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(10002, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([0,8]))
pari:[g,chi] = znchar(Mod(5971,10002))
\(\chi_{10002}(1843,\cdot)\)
\(\chi_{10002}(2353,\cdot)\)
\(\chi_{10002}(5503,\cdot)\)
\(\chi_{10002}(5713,\cdot)\)
\(\chi_{10002}(5971,\cdot)\)
\(\chi_{10002}(6955,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3335,1669)\) → \((1,e\left(\frac{4}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
| \( \chi_{ 10002 }(5971, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) |
sage:chi.jacobi_sum(n)