sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1667, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([8]))
pari:[g,chi] = znchar(Mod(970,1667))
| Modulus: | \(1667\) | |
| Conductor: | \(1667\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(7\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1667}(176,\cdot)\)
\(\chi_{1667}(287,\cdot)\)
\(\chi_{1667}(502,\cdot)\)
\(\chi_{1667}(686,\cdot)\)
\(\chi_{1667}(712,\cdot)\)
\(\chi_{1667}(970,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{4}{7}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 1667 }(970, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) |
sage:chi.jacobi_sum(n)