Properties

Label 3.59428681.6t8.a.a
Dimension $3$
Group $S_4$
Conductor $59428681$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(59428681\)\(\medspace = 13^{2} \cdot 593^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.7709.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.0.7709.1

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} + 6x^{2} - 3x + 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 239 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 29 + 197\cdot 239 + 232\cdot 239^{2} + 189\cdot 239^{3} + 139\cdot 239^{4} +O(239^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 102 + 54\cdot 239 + 44\cdot 239^{2} + 224\cdot 239^{3} + 123\cdot 239^{4} +O(239^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 171 + 176\cdot 239 + 30\cdot 239^{2} + 104\cdot 239^{3} + 71\cdot 239^{4} +O(239^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 178 + 49\cdot 239 + 170\cdot 239^{2} + 198\cdot 239^{3} + 142\cdot 239^{4} +O(239^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$