Properties

Label 3.59428681.6t8.a
Dimension $3$
Group $S_4$
Conductor $59428681$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:\(59428681\)\(\medspace = 13^{2} \cdot 593^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.0.7709.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Projective image: $S_4$
Projective field: Galois closure of 4.0.7709.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 239 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 29 + 197\cdot 239 + 232\cdot 239^{2} + 189\cdot 239^{3} + 139\cdot 239^{4} +O(239^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 102 + 54\cdot 239 + 44\cdot 239^{2} + 224\cdot 239^{3} + 123\cdot 239^{4} +O(239^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 171 + 176\cdot 239 + 30\cdot 239^{2} + 104\cdot 239^{3} + 71\cdot 239^{4} +O(239^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 178 + 49\cdot 239 + 170\cdot 239^{2} + 198\cdot 239^{3} + 142\cdot 239^{4} +O(239^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.