Basic invariants
| Dimension: | $2$ |
| Group: | $D_{4}$ |
| Conductor: | \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 4.0.38400.4 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $D_{4}$ |
| Parity: | odd |
| Determinant: | 1.120.2t1.b.a |
| Projective image: | $C_2^2$ |
| Projective field: | Galois closure of \(\Q(\sqrt{-5}, \sqrt{6})\) |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{4} + 4x^{2} + 24 \)
|
The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 1 + 12\cdot 29 + 27\cdot 29^{2} + 22\cdot 29^{3} + 13\cdot 29^{4} +O(29^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 13 + 10\cdot 29 + 6\cdot 29^{2} + 15\cdot 29^{3} + 22\cdot 29^{4} +O(29^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 16 + 18\cdot 29 + 22\cdot 29^{2} + 13\cdot 29^{3} + 6\cdot 29^{4} +O(29^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 28 + 16\cdot 29 + 29^{2} + 6\cdot 29^{3} + 15\cdot 29^{4} +O(29^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | |
| $1$ | $2$ | $(1,4)(2,3)$ | $-2$ | |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ | ✓ |
| $2$ | $2$ | $(1,4)$ | $0$ | |
| $2$ | $4$ | $(1,3,4,2)$ | $0$ |