Basic invariants
| Dimension: | $1$ |
| Group: | $C_5$ |
| Conductor: | \(451\)\(\medspace = 11 \cdot 41 \) |
| Artin field: | Galois closure of 5.5.41371966801.3 |
| Galois orbit size: | $4$ |
| Smallest permutation container: | $C_5$ |
| Parity: | even |
| Dirichlet character: | \(\chi_{451}(174,\cdot)\) |
| Projective image: | $C_1$ |
| Projective field: | Galois closure of \(\Q\) |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{5} - x^{4} - 180x^{3} - 415x^{2} + 3875x + 2551 \)
|
The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 1 + 2\cdot 17 + 3\cdot 17^{2} + 3\cdot 17^{3} + 12\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 5 + 2\cdot 17 + 8\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 6 + 14\cdot 17 + 9\cdot 17^{2} + 6\cdot 17^{3} + 12\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 11 + 8\cdot 17 + 5\cdot 17^{2} + 9\cdot 17^{3} + 14\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 5 }$ | $=$ |
\( 12 + 6\cdot 17 + 15\cdot 17^{2} + 14\cdot 17^{3} + 3\cdot 17^{4} +O(17^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 5 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 5 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $1$ | ✓ |
| $1$ | $5$ | $(1,2,3,5,4)$ | $\zeta_{5}^{2}$ | |
| $1$ | $5$ | $(1,3,4,2,5)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ | |
| $1$ | $5$ | $(1,5,2,4,3)$ | $\zeta_{5}$ | |
| $1$ | $5$ | $(1,4,5,3,2)$ | $\zeta_{5}^{3}$ |