Properties

Label 1.451.5t1.c.b
Dimension $1$
Group $C_5$
Conductor $451$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_5$
Conductor: \(451\)\(\medspace = 11 \cdot 41 \)
Artin field: Galois closure of 5.5.41371966801.3
Galois orbit size: $4$
Smallest permutation container: $C_5$
Parity: even
Dirichlet character: \(\chi_{451}(174,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{5} - x^{4} - 180x^{3} - 415x^{2} + 3875x + 2551 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 1 + 2\cdot 17 + 3\cdot 17^{2} + 3\cdot 17^{3} + 12\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 + 2\cdot 17 + 8\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 + 14\cdot 17 + 9\cdot 17^{2} + 6\cdot 17^{3} + 12\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 11 + 8\cdot 17 + 5\cdot 17^{2} + 9\cdot 17^{3} + 14\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 12 + 6\cdot 17 + 15\cdot 17^{2} + 14\cdot 17^{3} + 3\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$5$$(1,2,3,5,4)$$\zeta_{5}^{2}$
$1$$5$$(1,3,4,2,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,5,2,4,3)$$\zeta_{5}$
$1$$5$$(1,4,5,3,2)$$\zeta_{5}^{3}$