Properties

Label 1.451.5t1.c
Dimension $1$
Group $C_5$
Conductor $451$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:\(451\)\(\medspace = 11 \cdot 41 \)
Artin number field: Galois closure of 5.5.41371966801.3
Galois orbit size: $4$
Smallest permutation container: $C_5$
Parity: even
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 1 + 2\cdot 17 + 3\cdot 17^{2} + 3\cdot 17^{3} + 12\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 + 2\cdot 17 + 8\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 + 14\cdot 17 + 9\cdot 17^{2} + 6\cdot 17^{3} + 12\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 11 + 8\cdot 17 + 5\cdot 17^{2} + 9\cdot 17^{3} + 14\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 12 + 6\cdot 17 + 15\cdot 17^{2} + 14\cdot 17^{3} + 3\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$ $c3$ $c4$
$1$ $1$ $()$ $1$ $1$ $1$ $1$
$1$ $5$ $(1,2,3,5,4)$ $\zeta_{5}$ $\zeta_{5}^{2}$ $\zeta_{5}^{3}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$ $5$ $(1,3,4,2,5)$ $\zeta_{5}^{2}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}$ $\zeta_{5}^{3}$
$1$ $5$ $(1,5,2,4,3)$ $\zeta_{5}^{3}$ $\zeta_{5}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}^{2}$
$1$ $5$ $(1,4,5,3,2)$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}^{3}$ $\zeta_{5}^{2}$ $\zeta_{5}$
The blue line marks the conjugacy class containing complex conjugation.