Properties

Label 1.315.6t1.f.b
Dimension $1$
Group $C_6$
Conductor $315$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(315\)\(\medspace = 3^{2} \cdot 5 \cdot 7 \)
Artin field: Galois closure of 6.6.41351522625.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: even
Dirichlet character: \(\chi_{315}(194,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - 63x^{4} - 98x^{3} + 756x^{2} + 1512x - 224 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{2} + 29x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 23 a + 12 + \left(29 a + 16\right)\cdot 31 + \left(27 a + 27\right)\cdot 31^{2} + \left(6 a + 2\right)\cdot 31^{3} + 16 a\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 16 a + 12 + \left(22 a + 21\right)\cdot 31 + \left(8 a + 30\right)\cdot 31^{2} + \left(a + 6\right)\cdot 31^{3} + \left(4 a + 7\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 8 a + 27 + \left(a + 21\right)\cdot 31 + \left(3 a + 22\right)\cdot 31^{2} + \left(24 a + 19\right)\cdot 31^{3} + \left(14 a + 25\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 15 a + 13 + \left(8 a + 19\right)\cdot 31 + \left(22 a + 25\right)\cdot 31^{2} + 29 a\cdot 31^{3} + \left(26 a + 14\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 24 a + 6 + \left(23 a + 26\right)\cdot 31 + \left(11 a + 8\right)\cdot 31^{2} + \left(25 a + 27\right)\cdot 31^{3} + \left(18 a + 16\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 7 a + 23 + \left(7 a + 18\right)\cdot 31 + \left(19 a + 8\right)\cdot 31^{2} + \left(5 a + 4\right)\cdot 31^{3} + \left(12 a + 29\right)\cdot 31^{4} +O(31^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,5,3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)(5,6)$$-1$
$1$$3$$(1,5,4)(2,3,6)$$-\zeta_{3} - 1$
$1$$3$$(1,4,5)(2,6,3)$$\zeta_{3}$
$1$$6$$(1,2,5,3,4,6)$$-\zeta_{3}$
$1$$6$$(1,6,4,3,5,2)$$\zeta_{3} + 1$