Basic invariants
| Dimension: | $1$ |
| Group: | $C_6$ |
| Conductor: | \(315\)\(\medspace = 3^{2} \cdot 5 \cdot 7 \) |
| Artin number field: | Galois closure of 6.6.41351522625.1 |
| Galois orbit size: | $2$ |
| Smallest permutation container: | $C_6$ |
| Parity: | even |
| Projective image: | $C_1$ |
| Projective field: | Galois closure of \(\Q\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$:
\( x^{2} + 29x + 3 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 23 a + 12 + \left(29 a + 16\right)\cdot 31 + \left(27 a + 27\right)\cdot 31^{2} + \left(6 a + 2\right)\cdot 31^{3} + 16 a\cdot 31^{4} +O(31^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 16 a + 12 + \left(22 a + 21\right)\cdot 31 + \left(8 a + 30\right)\cdot 31^{2} + \left(a + 6\right)\cdot 31^{3} + \left(4 a + 7\right)\cdot 31^{4} +O(31^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 8 a + 27 + \left(a + 21\right)\cdot 31 + \left(3 a + 22\right)\cdot 31^{2} + \left(24 a + 19\right)\cdot 31^{3} + \left(14 a + 25\right)\cdot 31^{4} +O(31^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 15 a + 13 + \left(8 a + 19\right)\cdot 31 + \left(22 a + 25\right)\cdot 31^{2} + 29 a\cdot 31^{3} + \left(26 a + 14\right)\cdot 31^{4} +O(31^{5})\)
|
| $r_{ 5 }$ | $=$ |
\( 24 a + 6 + \left(23 a + 26\right)\cdot 31 + \left(11 a + 8\right)\cdot 31^{2} + \left(25 a + 27\right)\cdot 31^{3} + \left(18 a + 16\right)\cdot 31^{4} +O(31^{5})\)
|
| $r_{ 6 }$ | $=$ |
\( 7 a + 23 + \left(7 a + 18\right)\cdot 31 + \left(19 a + 8\right)\cdot 31^{2} + \left(5 a + 4\right)\cdot 31^{3} + \left(12 a + 29\right)\cdot 31^{4} +O(31^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values | |
| $c1$ | $c2$ | |||
| $1$ | $1$ | $()$ | $1$ | $1$ |
| $1$ | $2$ | $(1,3)(2,4)(5,6)$ | $-1$ | $-1$ |
| $1$ | $3$ | $(1,5,4)(2,3,6)$ | $\zeta_{3}$ | $-\zeta_{3} - 1$ |
| $1$ | $3$ | $(1,4,5)(2,6,3)$ | $-\zeta_{3} - 1$ | $\zeta_{3}$ |
| $1$ | $6$ | $(1,2,5,3,4,6)$ | $\zeta_{3} + 1$ | $-\zeta_{3}$ |
| $1$ | $6$ | $(1,6,4,3,5,2)$ | $-\zeta_{3}$ | $\zeta_{3} + 1$ |