Basic invariants
Dimension: | $1$ |
Group: | $C_6$ |
Conductor: | \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \) |
Artin field: | Galois closure of 6.0.1008189504.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6$ |
Parity: | odd |
Dirichlet character: | \(\chi_{252}(151,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} + 42x^{4} + 441x^{2} + 784 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$:
\( x^{2} + 29x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 8 a + 23 + 3\cdot 31 + \left(16 a + 15\right)\cdot 31^{2} + \left(22 a + 16\right)\cdot 31^{3} + \left(2 a + 8\right)\cdot 31^{4} + \left(4 a + 28\right)\cdot 31^{5} +O(31^{6})\)
|
$r_{ 2 }$ | $=$ |
\( 24 a + 7 + \left(4 a + 7\right)\cdot 31 + \left(29 a + 4\right)\cdot 31^{2} + \left(14 a + 15\right)\cdot 31^{3} + \left(3 a + 19\right)\cdot 31^{4} + \left(12 a + 20\right)\cdot 31^{5} +O(31^{6})\)
|
$r_{ 3 }$ | $=$ |
\( 30 a + 1 + \left(25 a + 20\right)\cdot 31 + \left(16 a + 11\right)\cdot 31^{2} + \left(24 a + 30\right)\cdot 31^{3} + \left(24 a + 2\right)\cdot 31^{4} + \left(14 a + 13\right)\cdot 31^{5} +O(31^{6})\)
|
$r_{ 4 }$ | $=$ |
\( 23 a + 8 + \left(30 a + 27\right)\cdot 31 + \left(14 a + 15\right)\cdot 31^{2} + \left(8 a + 14\right)\cdot 31^{3} + \left(28 a + 22\right)\cdot 31^{4} + \left(26 a + 2\right)\cdot 31^{5} +O(31^{6})\)
|
$r_{ 5 }$ | $=$ |
\( 7 a + 24 + \left(26 a + 23\right)\cdot 31 + \left(a + 26\right)\cdot 31^{2} + \left(16 a + 15\right)\cdot 31^{3} + \left(27 a + 11\right)\cdot 31^{4} + \left(18 a + 10\right)\cdot 31^{5} +O(31^{6})\)
|
$r_{ 6 }$ | $=$ |
\( a + 30 + \left(5 a + 10\right)\cdot 31 + \left(14 a + 19\right)\cdot 31^{2} + 6 a\cdot 31^{3} + \left(6 a + 28\right)\cdot 31^{4} + \left(16 a + 17\right)\cdot 31^{5} +O(31^{6})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $1$ | |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-1$ | ✓ |
$1$ | $3$ | $(1,3,2)(4,6,5)$ | $-\zeta_{3} - 1$ | |
$1$ | $3$ | $(1,2,3)(4,5,6)$ | $\zeta_{3}$ | |
$1$ | $6$ | $(1,6,2,4,3,5)$ | $\zeta_{3} + 1$ | |
$1$ | $6$ | $(1,5,3,4,2,6)$ | $-\zeta_{3}$ |