Properties

Label 1.252.6t1.a
Dimension $1$
Group $C_6$
Conductor $252$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:\(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Artin number field: Galois closure of 6.0.1008189504.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{2} + 29x + 3 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 8 a + 23 + 3\cdot 31 + \left(16 a + 15\right)\cdot 31^{2} + \left(22 a + 16\right)\cdot 31^{3} + \left(2 a + 8\right)\cdot 31^{4} + \left(4 a + 28\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 24 a + 7 + \left(4 a + 7\right)\cdot 31 + \left(29 a + 4\right)\cdot 31^{2} + \left(14 a + 15\right)\cdot 31^{3} + \left(3 a + 19\right)\cdot 31^{4} + \left(12 a + 20\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 30 a + 1 + \left(25 a + 20\right)\cdot 31 + \left(16 a + 11\right)\cdot 31^{2} + \left(24 a + 30\right)\cdot 31^{3} + \left(24 a + 2\right)\cdot 31^{4} + \left(14 a + 13\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 23 a + 8 + \left(30 a + 27\right)\cdot 31 + \left(14 a + 15\right)\cdot 31^{2} + \left(8 a + 14\right)\cdot 31^{3} + \left(28 a + 22\right)\cdot 31^{4} + \left(26 a + 2\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 7 a + 24 + \left(26 a + 23\right)\cdot 31 + \left(a + 26\right)\cdot 31^{2} + \left(16 a + 15\right)\cdot 31^{3} + \left(27 a + 11\right)\cdot 31^{4} + \left(18 a + 10\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( a + 30 + \left(5 a + 10\right)\cdot 31 + \left(14 a + 19\right)\cdot 31^{2} + 6 a\cdot 31^{3} + \left(6 a + 28\right)\cdot 31^{4} + \left(16 a + 17\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-1$ $-1$
$1$ $3$ $(1,3,2)(4,6,5)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,2,3)(4,5,6)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,6,2,4,3,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$1$ $6$ $(1,5,3,4,2,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.