Basic invariants
| Dimension: | $1$ | 
| Group: | $C_6$ | 
| Conductor: | \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \) | 
| Artin number field: | Galois closure of 6.0.1008189504.1 | 
| Galois orbit size: | $2$ | 
| Smallest permutation container: | $C_6$ | 
| Parity: | odd | 
| Projective image: | $C_1$ | 
| Projective field: | Galois closure of \(\Q\) | 
Galois action
Roots of defining polynomial
    The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
    
    
    Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: 
    \( x^{2} + 29x + 3 \)
    
    
    
        ![Copy content]() 
    
    
        ![Toggle raw display]() 
    
    
       
    Roots:
     
      
                
      
   
    | $r_{ 1 }$ | $=$ | \( 8 a + 23 + 3\cdot 31 + \left(16 a + 15\right)\cdot 31^{2} + \left(22 a + 16\right)\cdot 31^{3} + \left(2 a + 8\right)\cdot 31^{4} + \left(4 a + 28\right)\cdot 31^{5} +O(31^{6})\) | 
| $r_{ 2 }$ | $=$ | \( 24 a + 7 + \left(4 a + 7\right)\cdot 31 + \left(29 a + 4\right)\cdot 31^{2} + \left(14 a + 15\right)\cdot 31^{3} + \left(3 a + 19\right)\cdot 31^{4} + \left(12 a + 20\right)\cdot 31^{5} +O(31^{6})\) | 
| $r_{ 3 }$ | $=$ | \( 30 a + 1 + \left(25 a + 20\right)\cdot 31 + \left(16 a + 11\right)\cdot 31^{2} + \left(24 a + 30\right)\cdot 31^{3} + \left(24 a + 2\right)\cdot 31^{4} + \left(14 a + 13\right)\cdot 31^{5} +O(31^{6})\) | 
| $r_{ 4 }$ | $=$ | \( 23 a + 8 + \left(30 a + 27\right)\cdot 31 + \left(14 a + 15\right)\cdot 31^{2} + \left(8 a + 14\right)\cdot 31^{3} + \left(28 a + 22\right)\cdot 31^{4} + \left(26 a + 2\right)\cdot 31^{5} +O(31^{6})\) | 
| $r_{ 5 }$ | $=$ | \( 7 a + 24 + \left(26 a + 23\right)\cdot 31 + \left(a + 26\right)\cdot 31^{2} + \left(16 a + 15\right)\cdot 31^{3} + \left(27 a + 11\right)\cdot 31^{4} + \left(18 a + 10\right)\cdot 31^{5} +O(31^{6})\) | 
| $r_{ 6 }$ | $=$ | \( a + 30 + \left(5 a + 10\right)\cdot 31 + \left(14 a + 19\right)\cdot 31^{2} + 6 a\cdot 31^{3} + \left(6 a + 28\right)\cdot 31^{4} + \left(16 a + 17\right)\cdot 31^{5} +O(31^{6})\) | 
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation | 
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values | |
| $c1$ | $c2$ | |||
| $1$ | $1$ | $()$ | $1$ | $1$ | 
| $1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-1$ | $-1$ | 
| $1$ | $3$ | $(1,3,2)(4,6,5)$ | $\zeta_{3}$ | $-\zeta_{3} - 1$ | 
| $1$ | $3$ | $(1,2,3)(4,5,6)$ | $-\zeta_{3} - 1$ | $\zeta_{3}$ | 
| $1$ | $6$ | $(1,6,2,4,3,5)$ | $-\zeta_{3}$ | $\zeta_{3} + 1$ | 
| $1$ | $6$ | $(1,5,3,4,2,6)$ | $\zeta_{3} + 1$ | $-\zeta_{3}$ | 
