Properties

Label 4.4.a_m_a_cq
Base field $\F_{2^{2}}$
Dimension $4$
$p$-rank $0$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive no
Principally polarizable yes

Downloads

Learn more

Invariants

Base field:  $\F_{2^{2}}$
Dimension:  $4$
L-polynomial:  $( 1 + 6 x^{2} + 16 x^{4} )^{2}$
  $1 + 12 x^{2} + 68 x^{4} + 192 x^{6} + 256 x^{8}$
Frobenius angles:  $\pm0.384973271919$, $\pm0.384973271919$, $\pm0.615026728081$, $\pm0.615026728081$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{2}, \sqrt{-7})\)
Galois group:  $C_2^2$

This isogeny class is simple and geometrically simple, not primitive, not ordinary, and not supersingular. It is principally polarizable.

Newton polygon

$p$-rank:  $0$
Slopes:  $[1/4, 1/4, 1/4, 1/4, 3/4, 3/4, 3/4, 3/4]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $529$ $279841$ $16200625$ $4097152081$ $1095691843009$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $5$ $41$ $65$ $241$ $1025$ $3809$ $16385$ $67521$ $262145$ $1041281$

Jacobians and polarizations

This isogeny class is principally polarizable, but it is unknown whether it contains a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{4}}$.

Endomorphism algebra over $\F_{2^{2}}$
The endomorphism algebra of this simple isogeny class is the quaternion algebra over \(\Q(\sqrt{2}, \sqrt{-7})\) with the following ramification data at primes above $2$, and unramified at all archimedean places:
$v$ ($ 2 $,\( \frac{3}{2} \pi^{2} + \pi + 1 \)) ($ 2 $,\( \frac{1}{4} \pi^{3} + \frac{1}{2} \pi^{2} + \frac{3}{2} \pi \))
$\operatorname{inv}_v$$1/2$$1/2$
where $\pi$ is a root of $x^{4} + 6x^{2} + 16$.
Endomorphism algebra over $\overline{\F}_{2^{2}}$
The base change of $A$ to $\F_{2^{4}}$ is the simple isogeny class 4.16.y_ku_czo_oku and its endomorphism algebra is the division algebra of dimension 16 over \(\Q(\sqrt{-7}) \) with the following ramification data at primes above $2$, and unramified at all archimedean places:
$v$ ($ 2 $,\( \pi + 1 \)) ($ 2 $,\( \pi \))
$\operatorname{inv}_v$$1/4$$3/4$
where $\pi$ is a root of $x^{2} - x + 2$.

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{2^{2}}$.

SubfieldPrimitive Model
$\F_{2}$4.2.a_a_a_g

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
4.4.a_ag_a_u$3$(not in LMFDB)
4.4.a_am_a_cq$4$(not in LMFDB)
4.4.ae_i_ay_cq$8$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.4.a_ag_a_u$3$(not in LMFDB)
4.4.a_am_a_cq$4$(not in LMFDB)
4.4.ae_i_ay_cq$8$(not in LMFDB)
4.4.e_i_y_cq$8$(not in LMFDB)
4.4.a_g_a_u$12$(not in LMFDB)
4.4.ac_c_m_abc$24$(not in LMFDB)
4.4.c_c_am_abc$24$(not in LMFDB)