Properties

Label 1935.2.a.u.1.3
Level $1935$
Weight $2$
Character 1935.1
Self dual yes
Analytic conductor $15.451$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1935,2,Mod(1,1935)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1935, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1935.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1935 = 3^{2} \cdot 5 \cdot 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1935.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.4510527911\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1933097.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 7x^{3} + 13x^{2} + 5x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 215)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.434772\) of defining polynomial
Character \(\chi\) \(=\) 1935.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.434772 q^{2} -1.81097 q^{4} -1.00000 q^{5} +3.42802 q^{7} +1.65691 q^{8} +O(q^{10})\) \(q-0.434772 q^{2} -1.81097 q^{4} -1.00000 q^{5} +3.42802 q^{7} +1.65691 q^{8} +0.434772 q^{10} +3.52645 q^{11} +4.34418 q^{13} -1.49041 q^{14} +2.90157 q^{16} -0.147314 q^{17} -8.29463 q^{19} +1.81097 q^{20} -1.53320 q^{22} -3.47463 q^{23} +1.00000 q^{25} -1.88873 q^{26} -6.20805 q^{28} +10.4780 q^{29} +2.52243 q^{31} -4.57533 q^{32} +0.0640482 q^{34} -3.42802 q^{35} -4.80422 q^{37} +3.60628 q^{38} -1.65691 q^{40} +0.513408 q^{41} -1.00000 q^{43} -6.38631 q^{44} +1.51067 q^{46} -6.75240 q^{47} +4.75132 q^{49} -0.434772 q^{50} -7.86719 q^{52} +8.14731 q^{53} -3.52645 q^{55} +5.67991 q^{56} -4.55554 q^{58} -2.09168 q^{59} +10.6884 q^{61} -1.09668 q^{62} -3.81391 q^{64} -4.34418 q^{65} -4.06976 q^{67} +0.266782 q^{68} +1.49041 q^{70} +11.1507 q^{71} +5.53027 q^{73} +2.08874 q^{74} +15.0213 q^{76} +12.0887 q^{77} +2.32623 q^{79} -2.90157 q^{80} -0.223216 q^{82} +4.60509 q^{83} +0.147314 q^{85} +0.434772 q^{86} +5.84300 q^{88} -15.6084 q^{89} +14.8919 q^{91} +6.29246 q^{92} +2.93576 q^{94} +8.29463 q^{95} +17.7693 q^{97} -2.06574 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 8 q^{4} - 5 q^{5} + 5 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 2 q^{2} + 8 q^{4} - 5 q^{5} + 5 q^{7} - 3 q^{8} + 2 q^{10} + 6 q^{11} + 5 q^{13} - q^{14} + 14 q^{16} + 17 q^{17} - 6 q^{19} - 8 q^{20} - 8 q^{22} - q^{23} + 5 q^{25} - 22 q^{26} + 26 q^{28} - 6 q^{29} + 6 q^{31} + 7 q^{32} - 5 q^{35} + 5 q^{37} + 16 q^{38} + 3 q^{40} - 2 q^{41} - 5 q^{43} + 15 q^{44} - 14 q^{46} + 18 q^{49} - 2 q^{50} - 38 q^{52} + 23 q^{53} - 6 q^{55} + 19 q^{56} + 12 q^{58} + q^{59} + 20 q^{61} + 3 q^{62} - 25 q^{64} - 5 q^{65} + 21 q^{67} + 48 q^{68} + q^{70} - 4 q^{71} + 5 q^{73} - 24 q^{74} + 32 q^{76} + 26 q^{77} + 41 q^{79} - 14 q^{80} + 38 q^{82} + 7 q^{83} - 17 q^{85} + 2 q^{86} + 12 q^{88} - 20 q^{89} - 42 q^{91} + 52 q^{92} - 42 q^{94} + 6 q^{95} + 37 q^{97} + 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.434772 −0.307431 −0.153715 0.988115i \(-0.549124\pi\)
−0.153715 + 0.988115i \(0.549124\pi\)
\(3\) 0 0
\(4\) −1.81097 −0.905486
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 3.42802 1.29567 0.647835 0.761781i \(-0.275675\pi\)
0.647835 + 0.761781i \(0.275675\pi\)
\(8\) 1.65691 0.585805
\(9\) 0 0
\(10\) 0.434772 0.137487
\(11\) 3.52645 1.06326 0.531632 0.846975i \(-0.321579\pi\)
0.531632 + 0.846975i \(0.321579\pi\)
\(12\) 0 0
\(13\) 4.34418 1.20486 0.602429 0.798173i \(-0.294200\pi\)
0.602429 + 0.798173i \(0.294200\pi\)
\(14\) −1.49041 −0.398328
\(15\) 0 0
\(16\) 2.90157 0.725392
\(17\) −0.147314 −0.0357290 −0.0178645 0.999840i \(-0.505687\pi\)
−0.0178645 + 0.999840i \(0.505687\pi\)
\(18\) 0 0
\(19\) −8.29463 −1.90292 −0.951459 0.307775i \(-0.900416\pi\)
−0.951459 + 0.307775i \(0.900416\pi\)
\(20\) 1.81097 0.404946
\(21\) 0 0
\(22\) −1.53320 −0.326880
\(23\) −3.47463 −0.724511 −0.362255 0.932079i \(-0.617993\pi\)
−0.362255 + 0.932079i \(0.617993\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −1.88873 −0.370410
\(27\) 0 0
\(28\) −6.20805 −1.17321
\(29\) 10.4780 1.94571 0.972857 0.231409i \(-0.0743336\pi\)
0.972857 + 0.231409i \(0.0743336\pi\)
\(30\) 0 0
\(31\) 2.52243 0.453042 0.226521 0.974006i \(-0.427265\pi\)
0.226521 + 0.974006i \(0.427265\pi\)
\(32\) −4.57533 −0.808812
\(33\) 0 0
\(34\) 0.0640482 0.0109842
\(35\) −3.42802 −0.579441
\(36\) 0 0
\(37\) −4.80422 −0.789809 −0.394904 0.918722i \(-0.629222\pi\)
−0.394904 + 0.918722i \(0.629222\pi\)
\(38\) 3.60628 0.585015
\(39\) 0 0
\(40\) −1.65691 −0.261980
\(41\) 0.513408 0.0801809 0.0400905 0.999196i \(-0.487235\pi\)
0.0400905 + 0.999196i \(0.487235\pi\)
\(42\) 0 0
\(43\) −1.00000 −0.152499
\(44\) −6.38631 −0.962772
\(45\) 0 0
\(46\) 1.51067 0.222737
\(47\) −6.75240 −0.984939 −0.492469 0.870330i \(-0.663906\pi\)
−0.492469 + 0.870330i \(0.663906\pi\)
\(48\) 0 0
\(49\) 4.75132 0.678760
\(50\) −0.434772 −0.0614861
\(51\) 0 0
\(52\) −7.86719 −1.09098
\(53\) 8.14731 1.11912 0.559560 0.828790i \(-0.310970\pi\)
0.559560 + 0.828790i \(0.310970\pi\)
\(54\) 0 0
\(55\) −3.52645 −0.475507
\(56\) 5.67991 0.759009
\(57\) 0 0
\(58\) −4.55554 −0.598172
\(59\) −2.09168 −0.272313 −0.136157 0.990687i \(-0.543475\pi\)
−0.136157 + 0.990687i \(0.543475\pi\)
\(60\) 0 0
\(61\) 10.6884 1.36850 0.684252 0.729246i \(-0.260129\pi\)
0.684252 + 0.729246i \(0.260129\pi\)
\(62\) −1.09668 −0.139279
\(63\) 0 0
\(64\) −3.81391 −0.476739
\(65\) −4.34418 −0.538829
\(66\) 0 0
\(67\) −4.06976 −0.497200 −0.248600 0.968606i \(-0.579971\pi\)
−0.248600 + 0.968606i \(0.579971\pi\)
\(68\) 0.266782 0.0323521
\(69\) 0 0
\(70\) 1.49041 0.178138
\(71\) 11.1507 1.32334 0.661670 0.749795i \(-0.269848\pi\)
0.661670 + 0.749795i \(0.269848\pi\)
\(72\) 0 0
\(73\) 5.53027 0.647269 0.323634 0.946182i \(-0.395095\pi\)
0.323634 + 0.946182i \(0.395095\pi\)
\(74\) 2.08874 0.242811
\(75\) 0 0
\(76\) 15.0213 1.72307
\(77\) 12.0887 1.37764
\(78\) 0 0
\(79\) 2.32623 0.261722 0.130861 0.991401i \(-0.458226\pi\)
0.130861 + 0.991401i \(0.458226\pi\)
\(80\) −2.90157 −0.324405
\(81\) 0 0
\(82\) −0.223216 −0.0246501
\(83\) 4.60509 0.505474 0.252737 0.967535i \(-0.418669\pi\)
0.252737 + 0.967535i \(0.418669\pi\)
\(84\) 0 0
\(85\) 0.147314 0.0159785
\(86\) 0.434772 0.0468827
\(87\) 0 0
\(88\) 5.84300 0.622866
\(89\) −15.6084 −1.65449 −0.827246 0.561840i \(-0.810094\pi\)
−0.827246 + 0.561840i \(0.810094\pi\)
\(90\) 0 0
\(91\) 14.8919 1.56110
\(92\) 6.29246 0.656035
\(93\) 0 0
\(94\) 2.93576 0.302800
\(95\) 8.29463 0.851011
\(96\) 0 0
\(97\) 17.7693 1.80420 0.902098 0.431532i \(-0.142027\pi\)
0.902098 + 0.431532i \(0.142027\pi\)
\(98\) −2.06574 −0.208671
\(99\) 0 0
\(100\) −1.81097 −0.181097
\(101\) −7.57533 −0.753774 −0.376887 0.926259i \(-0.623005\pi\)
−0.376887 + 0.926259i \(0.623005\pi\)
\(102\) 0 0
\(103\) 10.4419 1.02888 0.514438 0.857528i \(-0.328001\pi\)
0.514438 + 0.857528i \(0.328001\pi\)
\(104\) 7.19789 0.705811
\(105\) 0 0
\(106\) −3.54223 −0.344052
\(107\) −1.24173 −0.120042 −0.0600211 0.998197i \(-0.519117\pi\)
−0.0600211 + 0.998197i \(0.519117\pi\)
\(108\) 0 0
\(109\) 19.4202 1.86012 0.930060 0.367407i \(-0.119754\pi\)
0.930060 + 0.367407i \(0.119754\pi\)
\(110\) 1.53320 0.146185
\(111\) 0 0
\(112\) 9.94664 0.939869
\(113\) −0.936529 −0.0881012 −0.0440506 0.999029i \(-0.514026\pi\)
−0.0440506 + 0.999029i \(0.514026\pi\)
\(114\) 0 0
\(115\) 3.47463 0.324011
\(116\) −18.9753 −1.76182
\(117\) 0 0
\(118\) 0.909404 0.0837174
\(119\) −0.504996 −0.0462929
\(120\) 0 0
\(121\) 1.43585 0.130532
\(122\) −4.64700 −0.420720
\(123\) 0 0
\(124\) −4.56806 −0.410224
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 15.8729 1.40849 0.704246 0.709956i \(-0.251285\pi\)
0.704246 + 0.709956i \(0.251285\pi\)
\(128\) 10.8089 0.955376
\(129\) 0 0
\(130\) 1.88873 0.165652
\(131\) 12.6748 1.10741 0.553703 0.832714i \(-0.313214\pi\)
0.553703 + 0.832714i \(0.313214\pi\)
\(132\) 0 0
\(133\) −28.4341 −2.46555
\(134\) 1.76942 0.152855
\(135\) 0 0
\(136\) −0.244086 −0.0209302
\(137\) −3.49655 −0.298730 −0.149365 0.988782i \(-0.547723\pi\)
−0.149365 + 0.988782i \(0.547723\pi\)
\(138\) 0 0
\(139\) 2.99727 0.254225 0.127112 0.991888i \(-0.459429\pi\)
0.127112 + 0.991888i \(0.459429\pi\)
\(140\) 6.20805 0.524676
\(141\) 0 0
\(142\) −4.84800 −0.406835
\(143\) 15.3195 1.28108
\(144\) 0 0
\(145\) −10.4780 −0.870149
\(146\) −2.40441 −0.198990
\(147\) 0 0
\(148\) 8.70031 0.715161
\(149\) 8.86367 0.726140 0.363070 0.931762i \(-0.381729\pi\)
0.363070 + 0.931762i \(0.381729\pi\)
\(150\) 0 0
\(151\) −16.8717 −1.37300 −0.686500 0.727130i \(-0.740854\pi\)
−0.686500 + 0.727130i \(0.740854\pi\)
\(152\) −13.7434 −1.11474
\(153\) 0 0
\(154\) −5.25585 −0.423529
\(155\) −2.52243 −0.202607
\(156\) 0 0
\(157\) 0.686807 0.0548132 0.0274066 0.999624i \(-0.491275\pi\)
0.0274066 + 0.999624i \(0.491275\pi\)
\(158\) −1.01138 −0.0804613
\(159\) 0 0
\(160\) 4.57533 0.361712
\(161\) −11.9111 −0.938727
\(162\) 0 0
\(163\) 6.91549 0.541663 0.270832 0.962627i \(-0.412701\pi\)
0.270832 + 0.962627i \(0.412701\pi\)
\(164\) −0.929769 −0.0726027
\(165\) 0 0
\(166\) −2.00216 −0.155398
\(167\) 7.18000 0.555605 0.277803 0.960638i \(-0.410394\pi\)
0.277803 + 0.960638i \(0.410394\pi\)
\(168\) 0 0
\(169\) 5.87187 0.451682
\(170\) −0.0640482 −0.00491227
\(171\) 0 0
\(172\) 1.81097 0.138085
\(173\) −14.2811 −1.08577 −0.542887 0.839806i \(-0.682669\pi\)
−0.542887 + 0.839806i \(0.682669\pi\)
\(174\) 0 0
\(175\) 3.42802 0.259134
\(176\) 10.2322 0.771284
\(177\) 0 0
\(178\) 6.78612 0.508641
\(179\) −10.1134 −0.755914 −0.377957 0.925823i \(-0.623373\pi\)
−0.377957 + 0.925823i \(0.623373\pi\)
\(180\) 0 0
\(181\) −1.20863 −0.0898366 −0.0449183 0.998991i \(-0.514303\pi\)
−0.0449183 + 0.998991i \(0.514303\pi\)
\(182\) −6.47460 −0.479929
\(183\) 0 0
\(184\) −5.75714 −0.424422
\(185\) 4.80422 0.353213
\(186\) 0 0
\(187\) −0.519497 −0.0379894
\(188\) 12.2284 0.891849
\(189\) 0 0
\(190\) −3.60628 −0.261627
\(191\) 11.7896 0.853068 0.426534 0.904472i \(-0.359734\pi\)
0.426534 + 0.904472i \(0.359734\pi\)
\(192\) 0 0
\(193\) 8.78628 0.632450 0.316225 0.948684i \(-0.397585\pi\)
0.316225 + 0.948684i \(0.397585\pi\)
\(194\) −7.72558 −0.554665
\(195\) 0 0
\(196\) −8.60451 −0.614608
\(197\) 20.7009 1.47488 0.737440 0.675412i \(-0.236034\pi\)
0.737440 + 0.675412i \(0.236034\pi\)
\(198\) 0 0
\(199\) −7.88873 −0.559217 −0.279609 0.960114i \(-0.590205\pi\)
−0.279609 + 0.960114i \(0.590205\pi\)
\(200\) 1.65691 0.117161
\(201\) 0 0
\(202\) 3.29355 0.231733
\(203\) 35.9187 2.52100
\(204\) 0 0
\(205\) −0.513408 −0.0358580
\(206\) −4.53987 −0.316308
\(207\) 0 0
\(208\) 12.6049 0.873994
\(209\) −29.2506 −2.02331
\(210\) 0 0
\(211\) −18.7883 −1.29344 −0.646719 0.762728i \(-0.723860\pi\)
−0.646719 + 0.762728i \(0.723860\pi\)
\(212\) −14.7546 −1.01335
\(213\) 0 0
\(214\) 0.539869 0.0369047
\(215\) 1.00000 0.0681994
\(216\) 0 0
\(217\) 8.64695 0.586993
\(218\) −8.44338 −0.571858
\(219\) 0 0
\(220\) 6.38631 0.430565
\(221\) −0.639959 −0.0430483
\(222\) 0 0
\(223\) −13.0551 −0.874232 −0.437116 0.899405i \(-0.644000\pi\)
−0.437116 + 0.899405i \(0.644000\pi\)
\(224\) −15.6843 −1.04795
\(225\) 0 0
\(226\) 0.407177 0.0270850
\(227\) −21.6000 −1.43364 −0.716822 0.697256i \(-0.754404\pi\)
−0.716822 + 0.697256i \(0.754404\pi\)
\(228\) 0 0
\(229\) 2.87945 0.190279 0.0951397 0.995464i \(-0.469670\pi\)
0.0951397 + 0.995464i \(0.469670\pi\)
\(230\) −1.51067 −0.0996109
\(231\) 0 0
\(232\) 17.3610 1.13981
\(233\) −22.7687 −1.49163 −0.745813 0.666155i \(-0.767939\pi\)
−0.745813 + 0.666155i \(0.767939\pi\)
\(234\) 0 0
\(235\) 6.75240 0.440478
\(236\) 3.78797 0.246576
\(237\) 0 0
\(238\) 0.219558 0.0142319
\(239\) 21.4719 1.38890 0.694452 0.719539i \(-0.255647\pi\)
0.694452 + 0.719539i \(0.255647\pi\)
\(240\) 0 0
\(241\) −2.39827 −0.154486 −0.0772430 0.997012i \(-0.524612\pi\)
−0.0772430 + 0.997012i \(0.524612\pi\)
\(242\) −0.624270 −0.0401296
\(243\) 0 0
\(244\) −19.3563 −1.23916
\(245\) −4.75132 −0.303551
\(246\) 0 0
\(247\) −36.0333 −2.29275
\(248\) 4.17943 0.265394
\(249\) 0 0
\(250\) 0.434772 0.0274974
\(251\) −3.46113 −0.218464 −0.109232 0.994016i \(-0.534839\pi\)
−0.109232 + 0.994016i \(0.534839\pi\)
\(252\) 0 0
\(253\) −12.2531 −0.770347
\(254\) −6.90110 −0.433013
\(255\) 0 0
\(256\) 2.92843 0.183027
\(257\) 13.9899 0.872668 0.436334 0.899785i \(-0.356277\pi\)
0.436334 + 0.899785i \(0.356277\pi\)
\(258\) 0 0
\(259\) −16.4690 −1.02333
\(260\) 7.86719 0.487902
\(261\) 0 0
\(262\) −5.51067 −0.340451
\(263\) 26.2315 1.61750 0.808751 0.588151i \(-0.200144\pi\)
0.808751 + 0.588151i \(0.200144\pi\)
\(264\) 0 0
\(265\) −8.14731 −0.500486
\(266\) 12.3624 0.757986
\(267\) 0 0
\(268\) 7.37023 0.450208
\(269\) −6.72899 −0.410274 −0.205137 0.978733i \(-0.565764\pi\)
−0.205137 + 0.978733i \(0.565764\pi\)
\(270\) 0 0
\(271\) 5.29736 0.321792 0.160896 0.986971i \(-0.448562\pi\)
0.160896 + 0.986971i \(0.448562\pi\)
\(272\) −0.427443 −0.0259175
\(273\) 0 0
\(274\) 1.52020 0.0918388
\(275\) 3.52645 0.212653
\(276\) 0 0
\(277\) 6.76297 0.406348 0.203174 0.979143i \(-0.434874\pi\)
0.203174 + 0.979143i \(0.434874\pi\)
\(278\) −1.30313 −0.0781564
\(279\) 0 0
\(280\) −5.67991 −0.339439
\(281\) 16.3690 0.976492 0.488246 0.872706i \(-0.337637\pi\)
0.488246 + 0.872706i \(0.337637\pi\)
\(282\) 0 0
\(283\) −28.2202 −1.67752 −0.838759 0.544502i \(-0.816719\pi\)
−0.838759 + 0.544502i \(0.816719\pi\)
\(284\) −20.1936 −1.19827
\(285\) 0 0
\(286\) −6.66051 −0.393844
\(287\) 1.75997 0.103888
\(288\) 0 0
\(289\) −16.9783 −0.998723
\(290\) 4.55554 0.267510
\(291\) 0 0
\(292\) −10.0152 −0.586093
\(293\) −9.03940 −0.528087 −0.264044 0.964511i \(-0.585056\pi\)
−0.264044 + 0.964511i \(0.585056\pi\)
\(294\) 0 0
\(295\) 2.09168 0.121782
\(296\) −7.96014 −0.462674
\(297\) 0 0
\(298\) −3.85368 −0.223238
\(299\) −15.0944 −0.872932
\(300\) 0 0
\(301\) −3.42802 −0.197588
\(302\) 7.33535 0.422102
\(303\) 0 0
\(304\) −24.0674 −1.38036
\(305\) −10.6884 −0.612013
\(306\) 0 0
\(307\) 13.2061 0.753711 0.376856 0.926272i \(-0.377005\pi\)
0.376856 + 0.926272i \(0.377005\pi\)
\(308\) −21.8924 −1.24743
\(309\) 0 0
\(310\) 1.09668 0.0622875
\(311\) 1.00273 0.0568599 0.0284299 0.999596i \(-0.490949\pi\)
0.0284299 + 0.999596i \(0.490949\pi\)
\(312\) 0 0
\(313\) 5.10184 0.288373 0.144186 0.989551i \(-0.453943\pi\)
0.144186 + 0.989551i \(0.453943\pi\)
\(314\) −0.298605 −0.0168512
\(315\) 0 0
\(316\) −4.21275 −0.236986
\(317\) 1.09441 0.0614683 0.0307342 0.999528i \(-0.490215\pi\)
0.0307342 + 0.999528i \(0.490215\pi\)
\(318\) 0 0
\(319\) 36.9501 2.06881
\(320\) 3.81391 0.213204
\(321\) 0 0
\(322\) 5.17862 0.288593
\(323\) 1.22192 0.0679893
\(324\) 0 0
\(325\) 4.34418 0.240972
\(326\) −3.00667 −0.166524
\(327\) 0 0
\(328\) 0.850670 0.0469704
\(329\) −23.1474 −1.27616
\(330\) 0 0
\(331\) 17.1663 0.943547 0.471774 0.881720i \(-0.343614\pi\)
0.471774 + 0.881720i \(0.343614\pi\)
\(332\) −8.33969 −0.457700
\(333\) 0 0
\(334\) −3.12167 −0.170810
\(335\) 4.06976 0.222355
\(336\) 0 0
\(337\) −23.0000 −1.25289 −0.626446 0.779465i \(-0.715491\pi\)
−0.626446 + 0.779465i \(0.715491\pi\)
\(338\) −2.55293 −0.138861
\(339\) 0 0
\(340\) −0.266782 −0.0144683
\(341\) 8.89523 0.481704
\(342\) 0 0
\(343\) −7.70852 −0.416221
\(344\) −1.65691 −0.0893344
\(345\) 0 0
\(346\) 6.20904 0.333800
\(347\) 13.8648 0.744299 0.372150 0.928173i \(-0.378621\pi\)
0.372150 + 0.928173i \(0.378621\pi\)
\(348\) 0 0
\(349\) −1.71755 −0.0919382 −0.0459691 0.998943i \(-0.514638\pi\)
−0.0459691 + 0.998943i \(0.514638\pi\)
\(350\) −1.49041 −0.0796657
\(351\) 0 0
\(352\) −16.1347 −0.859982
\(353\) 13.3575 0.710947 0.355474 0.934686i \(-0.384320\pi\)
0.355474 + 0.934686i \(0.384320\pi\)
\(354\) 0 0
\(355\) −11.1507 −0.591816
\(356\) 28.2665 1.49812
\(357\) 0 0
\(358\) 4.39704 0.232391
\(359\) −30.7771 −1.62435 −0.812177 0.583412i \(-0.801717\pi\)
−0.812177 + 0.583412i \(0.801717\pi\)
\(360\) 0 0
\(361\) 49.8009 2.62110
\(362\) 0.525478 0.0276185
\(363\) 0 0
\(364\) −26.9689 −1.41355
\(365\) −5.53027 −0.289467
\(366\) 0 0
\(367\) 17.0314 0.889030 0.444515 0.895771i \(-0.353376\pi\)
0.444515 + 0.895771i \(0.353376\pi\)
\(368\) −10.0819 −0.525554
\(369\) 0 0
\(370\) −2.08874 −0.108589
\(371\) 27.9292 1.45001
\(372\) 0 0
\(373\) 33.5031 1.73472 0.867362 0.497677i \(-0.165813\pi\)
0.867362 + 0.497677i \(0.165813\pi\)
\(374\) 0.225863 0.0116791
\(375\) 0 0
\(376\) −11.1881 −0.576982
\(377\) 45.5182 2.34431
\(378\) 0 0
\(379\) −1.63225 −0.0838432 −0.0419216 0.999121i \(-0.513348\pi\)
−0.0419216 + 0.999121i \(0.513348\pi\)
\(380\) −15.0213 −0.770579
\(381\) 0 0
\(382\) −5.12581 −0.262259
\(383\) 18.8360 0.962477 0.481238 0.876590i \(-0.340187\pi\)
0.481238 + 0.876590i \(0.340187\pi\)
\(384\) 0 0
\(385\) −12.0887 −0.616099
\(386\) −3.82003 −0.194434
\(387\) 0 0
\(388\) −32.1796 −1.63367
\(389\) −20.0472 −1.01643 −0.508217 0.861229i \(-0.669695\pi\)
−0.508217 + 0.861229i \(0.669695\pi\)
\(390\) 0 0
\(391\) 0.511863 0.0258860
\(392\) 7.87249 0.397621
\(393\) 0 0
\(394\) −9.00019 −0.453423
\(395\) −2.32623 −0.117046
\(396\) 0 0
\(397\) 9.36558 0.470045 0.235022 0.971990i \(-0.424484\pi\)
0.235022 + 0.971990i \(0.424484\pi\)
\(398\) 3.42980 0.171920
\(399\) 0 0
\(400\) 2.90157 0.145078
\(401\) −27.6415 −1.38035 −0.690176 0.723641i \(-0.742467\pi\)
−0.690176 + 0.723641i \(0.742467\pi\)
\(402\) 0 0
\(403\) 10.9579 0.545851
\(404\) 13.7187 0.682532
\(405\) 0 0
\(406\) −15.6165 −0.775033
\(407\) −16.9418 −0.839776
\(408\) 0 0
\(409\) 8.75240 0.432778 0.216389 0.976307i \(-0.430572\pi\)
0.216389 + 0.976307i \(0.430572\pi\)
\(410\) 0.223216 0.0110238
\(411\) 0 0
\(412\) −18.9101 −0.931633
\(413\) −7.17031 −0.352828
\(414\) 0 0
\(415\) −4.60509 −0.226055
\(416\) −19.8761 −0.974504
\(417\) 0 0
\(418\) 12.7174 0.622026
\(419\) −5.38920 −0.263280 −0.131640 0.991298i \(-0.542024\pi\)
−0.131640 + 0.991298i \(0.542024\pi\)
\(420\) 0 0
\(421\) −34.4283 −1.67793 −0.838966 0.544184i \(-0.816839\pi\)
−0.838966 + 0.544184i \(0.816839\pi\)
\(422\) 8.16863 0.397643
\(423\) 0 0
\(424\) 13.4993 0.655586
\(425\) −0.147314 −0.00714579
\(426\) 0 0
\(427\) 36.6399 1.77313
\(428\) 2.24873 0.108697
\(429\) 0 0
\(430\) −0.434772 −0.0209666
\(431\) 15.4470 0.744056 0.372028 0.928222i \(-0.378663\pi\)
0.372028 + 0.928222i \(0.378663\pi\)
\(432\) 0 0
\(433\) 16.5096 0.793400 0.396700 0.917948i \(-0.370155\pi\)
0.396700 + 0.917948i \(0.370155\pi\)
\(434\) −3.75945 −0.180460
\(435\) 0 0
\(436\) −35.1695 −1.68431
\(437\) 28.8208 1.37868
\(438\) 0 0
\(439\) −27.0405 −1.29057 −0.645287 0.763941i \(-0.723262\pi\)
−0.645287 + 0.763941i \(0.723262\pi\)
\(440\) −5.84300 −0.278554
\(441\) 0 0
\(442\) 0.278237 0.0132344
\(443\) 1.84327 0.0875762 0.0437881 0.999041i \(-0.486057\pi\)
0.0437881 + 0.999041i \(0.486057\pi\)
\(444\) 0 0
\(445\) 15.6084 0.739911
\(446\) 5.67598 0.268766
\(447\) 0 0
\(448\) −13.0742 −0.617696
\(449\) 12.2474 0.577991 0.288995 0.957330i \(-0.406679\pi\)
0.288995 + 0.957330i \(0.406679\pi\)
\(450\) 0 0
\(451\) 1.81051 0.0852536
\(452\) 1.69603 0.0797745
\(453\) 0 0
\(454\) 9.39110 0.440746
\(455\) −14.8919 −0.698144
\(456\) 0 0
\(457\) 32.9544 1.54154 0.770771 0.637112i \(-0.219871\pi\)
0.770771 + 0.637112i \(0.219871\pi\)
\(458\) −1.25191 −0.0584977
\(459\) 0 0
\(460\) −6.29246 −0.293388
\(461\) −21.0988 −0.982671 −0.491336 0.870970i \(-0.663491\pi\)
−0.491336 + 0.870970i \(0.663491\pi\)
\(462\) 0 0
\(463\) 23.6686 1.09997 0.549986 0.835174i \(-0.314633\pi\)
0.549986 + 0.835174i \(0.314633\pi\)
\(464\) 30.4026 1.41141
\(465\) 0 0
\(466\) 9.89920 0.458572
\(467\) −17.8786 −0.827323 −0.413662 0.910431i \(-0.635750\pi\)
−0.413662 + 0.910431i \(0.635750\pi\)
\(468\) 0 0
\(469\) −13.9512 −0.644207
\(470\) −2.93576 −0.135416
\(471\) 0 0
\(472\) −3.46571 −0.159522
\(473\) −3.52645 −0.162146
\(474\) 0 0
\(475\) −8.29463 −0.380584
\(476\) 0.914535 0.0419176
\(477\) 0 0
\(478\) −9.33541 −0.426992
\(479\) 12.7833 0.584086 0.292043 0.956405i \(-0.405665\pi\)
0.292043 + 0.956405i \(0.405665\pi\)
\(480\) 0 0
\(481\) −20.8704 −0.951607
\(482\) 1.04270 0.0474937
\(483\) 0 0
\(484\) −2.60029 −0.118195
\(485\) −17.7693 −0.806861
\(486\) 0 0
\(487\) −3.29227 −0.149187 −0.0745935 0.997214i \(-0.523766\pi\)
−0.0745935 + 0.997214i \(0.523766\pi\)
\(488\) 17.7096 0.801676
\(489\) 0 0
\(490\) 2.06574 0.0933207
\(491\) 11.2678 0.508509 0.254255 0.967137i \(-0.418170\pi\)
0.254255 + 0.967137i \(0.418170\pi\)
\(492\) 0 0
\(493\) −1.54356 −0.0695183
\(494\) 15.6663 0.704860
\(495\) 0 0
\(496\) 7.31901 0.328633
\(497\) 38.2247 1.71461
\(498\) 0 0
\(499\) −28.7140 −1.28542 −0.642709 0.766111i \(-0.722189\pi\)
−0.642709 + 0.766111i \(0.722189\pi\)
\(500\) 1.81097 0.0809892
\(501\) 0 0
\(502\) 1.50480 0.0671626
\(503\) 12.4110 0.553379 0.276690 0.960959i \(-0.410763\pi\)
0.276690 + 0.960959i \(0.410763\pi\)
\(504\) 0 0
\(505\) 7.57533 0.337098
\(506\) 5.32732 0.236828
\(507\) 0 0
\(508\) −28.7454 −1.27537
\(509\) −20.4592 −0.906839 −0.453419 0.891297i \(-0.649796\pi\)
−0.453419 + 0.891297i \(0.649796\pi\)
\(510\) 0 0
\(511\) 18.9579 0.838647
\(512\) −22.8909 −1.01164
\(513\) 0 0
\(514\) −6.08244 −0.268285
\(515\) −10.4419 −0.460127
\(516\) 0 0
\(517\) −23.8120 −1.04725
\(518\) 7.16025 0.314603
\(519\) 0 0
\(520\) −7.19789 −0.315648
\(521\) −43.3303 −1.89834 −0.949168 0.314770i \(-0.898072\pi\)
−0.949168 + 0.314770i \(0.898072\pi\)
\(522\) 0 0
\(523\) −9.83341 −0.429985 −0.214993 0.976616i \(-0.568973\pi\)
−0.214993 + 0.976616i \(0.568973\pi\)
\(524\) −22.9538 −1.00274
\(525\) 0 0
\(526\) −11.4047 −0.497269
\(527\) −0.371590 −0.0161867
\(528\) 0 0
\(529\) −10.9269 −0.475084
\(530\) 3.54223 0.153865
\(531\) 0 0
\(532\) 51.4935 2.23253
\(533\) 2.23034 0.0966066
\(534\) 0 0
\(535\) 1.24173 0.0536845
\(536\) −6.74321 −0.291262
\(537\) 0 0
\(538\) 2.92558 0.126131
\(539\) 16.7553 0.721701
\(540\) 0 0
\(541\) 22.6054 0.971884 0.485942 0.873991i \(-0.338477\pi\)
0.485942 + 0.873991i \(0.338477\pi\)
\(542\) −2.30315 −0.0989286
\(543\) 0 0
\(544\) 0.674012 0.0288980
\(545\) −19.4202 −0.831871
\(546\) 0 0
\(547\) −32.7864 −1.40184 −0.700922 0.713238i \(-0.747228\pi\)
−0.700922 + 0.713238i \(0.747228\pi\)
\(548\) 6.33216 0.270496
\(549\) 0 0
\(550\) −1.53320 −0.0653760
\(551\) −86.9110 −3.70253
\(552\) 0 0
\(553\) 7.97438 0.339105
\(554\) −2.94035 −0.124924
\(555\) 0 0
\(556\) −5.42797 −0.230197
\(557\) 21.8974 0.927821 0.463910 0.885882i \(-0.346446\pi\)
0.463910 + 0.885882i \(0.346446\pi\)
\(558\) 0 0
\(559\) −4.34418 −0.183739
\(560\) −9.94664 −0.420322
\(561\) 0 0
\(562\) −7.11678 −0.300203
\(563\) 5.29931 0.223339 0.111670 0.993745i \(-0.464380\pi\)
0.111670 + 0.993745i \(0.464380\pi\)
\(564\) 0 0
\(565\) 0.936529 0.0394001
\(566\) 12.2694 0.515720
\(567\) 0 0
\(568\) 18.4756 0.775219
\(569\) 9.09310 0.381203 0.190601 0.981668i \(-0.438956\pi\)
0.190601 + 0.981668i \(0.438956\pi\)
\(570\) 0 0
\(571\) 4.29009 0.179535 0.0897673 0.995963i \(-0.471388\pi\)
0.0897673 + 0.995963i \(0.471388\pi\)
\(572\) −27.7432 −1.16000
\(573\) 0 0
\(574\) −0.765188 −0.0319383
\(575\) −3.47463 −0.144902
\(576\) 0 0
\(577\) −3.56791 −0.148534 −0.0742670 0.997238i \(-0.523662\pi\)
−0.0742670 + 0.997238i \(0.523662\pi\)
\(578\) 7.38170 0.307038
\(579\) 0 0
\(580\) 18.9753 0.787908
\(581\) 15.7863 0.654927
\(582\) 0 0
\(583\) 28.7311 1.18992
\(584\) 9.16313 0.379173
\(585\) 0 0
\(586\) 3.93008 0.162350
\(587\) −42.8506 −1.76863 −0.884317 0.466886i \(-0.845376\pi\)
−0.884317 + 0.466886i \(0.845376\pi\)
\(588\) 0 0
\(589\) −20.9226 −0.862102
\(590\) −0.909404 −0.0374396
\(591\) 0 0
\(592\) −13.9398 −0.572921
\(593\) 22.3566 0.918078 0.459039 0.888416i \(-0.348194\pi\)
0.459039 + 0.888416i \(0.348194\pi\)
\(594\) 0 0
\(595\) 0.504996 0.0207028
\(596\) −16.0519 −0.657510
\(597\) 0 0
\(598\) 6.56263 0.268366
\(599\) −32.1107 −1.31201 −0.656005 0.754757i \(-0.727755\pi\)
−0.656005 + 0.754757i \(0.727755\pi\)
\(600\) 0 0
\(601\) −38.4026 −1.56647 −0.783237 0.621723i \(-0.786433\pi\)
−0.783237 + 0.621723i \(0.786433\pi\)
\(602\) 1.49041 0.0607445
\(603\) 0 0
\(604\) 30.5542 1.24323
\(605\) −1.43585 −0.0583758
\(606\) 0 0
\(607\) −14.6539 −0.594784 −0.297392 0.954755i \(-0.596117\pi\)
−0.297392 + 0.954755i \(0.596117\pi\)
\(608\) 37.9507 1.53910
\(609\) 0 0
\(610\) 4.64700 0.188152
\(611\) −29.3336 −1.18671
\(612\) 0 0
\(613\) −43.2473 −1.74674 −0.873371 0.487056i \(-0.838071\pi\)
−0.873371 + 0.487056i \(0.838071\pi\)
\(614\) −5.74164 −0.231714
\(615\) 0 0
\(616\) 20.0299 0.807028
\(617\) −11.2697 −0.453702 −0.226851 0.973929i \(-0.572843\pi\)
−0.226851 + 0.973929i \(0.572843\pi\)
\(618\) 0 0
\(619\) 14.7440 0.592611 0.296306 0.955093i \(-0.404245\pi\)
0.296306 + 0.955093i \(0.404245\pi\)
\(620\) 4.56806 0.183458
\(621\) 0 0
\(622\) −0.435961 −0.0174805
\(623\) −53.5060 −2.14367
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −2.21814 −0.0886546
\(627\) 0 0
\(628\) −1.24379 −0.0496326
\(629\) 0.707730 0.0282191
\(630\) 0 0
\(631\) 28.9244 1.15146 0.575731 0.817639i \(-0.304717\pi\)
0.575731 + 0.817639i \(0.304717\pi\)
\(632\) 3.85435 0.153318
\(633\) 0 0
\(634\) −0.475821 −0.0188972
\(635\) −15.8729 −0.629897
\(636\) 0 0
\(637\) 20.6406 0.817809
\(638\) −16.0649 −0.636015
\(639\) 0 0
\(640\) −10.8089 −0.427257
\(641\) −19.0280 −0.751562 −0.375781 0.926708i \(-0.622626\pi\)
−0.375781 + 0.926708i \(0.622626\pi\)
\(642\) 0 0
\(643\) −43.1807 −1.70288 −0.851440 0.524452i \(-0.824270\pi\)
−0.851440 + 0.524452i \(0.824270\pi\)
\(644\) 21.5707 0.850004
\(645\) 0 0
\(646\) −0.531256 −0.0209020
\(647\) 18.7593 0.737503 0.368751 0.929528i \(-0.379785\pi\)
0.368751 + 0.929528i \(0.379785\pi\)
\(648\) 0 0
\(649\) −7.37620 −0.289541
\(650\) −1.88873 −0.0740820
\(651\) 0 0
\(652\) −12.5238 −0.490469
\(653\) −22.0692 −0.863636 −0.431818 0.901961i \(-0.642128\pi\)
−0.431818 + 0.901961i \(0.642128\pi\)
\(654\) 0 0
\(655\) −12.6748 −0.495247
\(656\) 1.48969 0.0581626
\(657\) 0 0
\(658\) 10.0638 0.392329
\(659\) −11.3232 −0.441091 −0.220545 0.975377i \(-0.570784\pi\)
−0.220545 + 0.975377i \(0.570784\pi\)
\(660\) 0 0
\(661\) −16.2409 −0.631697 −0.315849 0.948810i \(-0.602289\pi\)
−0.315849 + 0.948810i \(0.602289\pi\)
\(662\) −7.46345 −0.290075
\(663\) 0 0
\(664\) 7.63020 0.296109
\(665\) 28.4341 1.10263
\(666\) 0 0
\(667\) −36.4071 −1.40969
\(668\) −13.0028 −0.503093
\(669\) 0 0
\(670\) −1.76942 −0.0683586
\(671\) 37.6919 1.45508
\(672\) 0 0
\(673\) 20.3835 0.785726 0.392863 0.919597i \(-0.371485\pi\)
0.392863 + 0.919597i \(0.371485\pi\)
\(674\) 9.99979 0.385177
\(675\) 0 0
\(676\) −10.6338 −0.408992
\(677\) 39.7020 1.52587 0.762936 0.646474i \(-0.223757\pi\)
0.762936 + 0.646474i \(0.223757\pi\)
\(678\) 0 0
\(679\) 60.9134 2.33764
\(680\) 0.244086 0.00936027
\(681\) 0 0
\(682\) −3.86740 −0.148090
\(683\) 3.69595 0.141422 0.0707108 0.997497i \(-0.477473\pi\)
0.0707108 + 0.997497i \(0.477473\pi\)
\(684\) 0 0
\(685\) 3.49655 0.133596
\(686\) 3.35145 0.127959
\(687\) 0 0
\(688\) −2.90157 −0.110621
\(689\) 35.3934 1.34838
\(690\) 0 0
\(691\) 7.30957 0.278069 0.139035 0.990288i \(-0.455600\pi\)
0.139035 + 0.990288i \(0.455600\pi\)
\(692\) 25.8627 0.983153
\(693\) 0 0
\(694\) −6.02801 −0.228820
\(695\) −2.99727 −0.113693
\(696\) 0 0
\(697\) −0.0756324 −0.00286478
\(698\) 0.746742 0.0282646
\(699\) 0 0
\(700\) −6.20805 −0.234642
\(701\) 28.8131 1.08826 0.544128 0.839002i \(-0.316861\pi\)
0.544128 + 0.839002i \(0.316861\pi\)
\(702\) 0 0
\(703\) 39.8492 1.50294
\(704\) −13.4496 −0.506899
\(705\) 0 0
\(706\) −5.80747 −0.218567
\(707\) −25.9684 −0.976642
\(708\) 0 0
\(709\) 8.59692 0.322864 0.161432 0.986884i \(-0.448389\pi\)
0.161432 + 0.986884i \(0.448389\pi\)
\(710\) 4.84800 0.181942
\(711\) 0 0
\(712\) −25.8617 −0.969209
\(713\) −8.76452 −0.328234
\(714\) 0 0
\(715\) −15.3195 −0.572918
\(716\) 18.3152 0.684470
\(717\) 0 0
\(718\) 13.3810 0.499376
\(719\) −36.4995 −1.36120 −0.680600 0.732655i \(-0.738281\pi\)
−0.680600 + 0.732655i \(0.738281\pi\)
\(720\) 0 0
\(721\) 35.7952 1.33308
\(722\) −21.6520 −0.805806
\(723\) 0 0
\(724\) 2.18879 0.0813458
\(725\) 10.4780 0.389143
\(726\) 0 0
\(727\) −26.8954 −0.997494 −0.498747 0.866748i \(-0.666206\pi\)
−0.498747 + 0.866748i \(0.666206\pi\)
\(728\) 24.6745 0.914498
\(729\) 0 0
\(730\) 2.40441 0.0889911
\(731\) 0.147314 0.00544862
\(732\) 0 0
\(733\) 25.7501 0.951103 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(734\) −7.40477 −0.273315
\(735\) 0 0
\(736\) 15.8976 0.585993
\(737\) −14.3518 −0.528656
\(738\) 0 0
\(739\) −28.5152 −1.04895 −0.524474 0.851426i \(-0.675738\pi\)
−0.524474 + 0.851426i \(0.675738\pi\)
\(740\) −8.70031 −0.319830
\(741\) 0 0
\(742\) −12.1428 −0.445777
\(743\) −17.1761 −0.630131 −0.315066 0.949070i \(-0.602027\pi\)
−0.315066 + 0.949070i \(0.602027\pi\)
\(744\) 0 0
\(745\) −8.86367 −0.324740
\(746\) −14.5662 −0.533307
\(747\) 0 0
\(748\) 0.940794 0.0343988
\(749\) −4.25666 −0.155535
\(750\) 0 0
\(751\) −43.6085 −1.59130 −0.795649 0.605758i \(-0.792870\pi\)
−0.795649 + 0.605758i \(0.792870\pi\)
\(752\) −19.5926 −0.714467
\(753\) 0 0
\(754\) −19.7901 −0.720712
\(755\) 16.8717 0.614024
\(756\) 0 0
\(757\) −17.3185 −0.629452 −0.314726 0.949183i \(-0.601913\pi\)
−0.314726 + 0.949183i \(0.601913\pi\)
\(758\) 0.709659 0.0257760
\(759\) 0 0
\(760\) 13.7434 0.498526
\(761\) 37.9806 1.37680 0.688398 0.725333i \(-0.258314\pi\)
0.688398 + 0.725333i \(0.258314\pi\)
\(762\) 0 0
\(763\) 66.5729 2.41010
\(764\) −21.3507 −0.772441
\(765\) 0 0
\(766\) −8.18939 −0.295895
\(767\) −9.08662 −0.328099
\(768\) 0 0
\(769\) −13.9857 −0.504338 −0.252169 0.967683i \(-0.581144\pi\)
−0.252169 + 0.967683i \(0.581144\pi\)
\(770\) 5.25585 0.189408
\(771\) 0 0
\(772\) −15.9117 −0.572675
\(773\) −13.4580 −0.484052 −0.242026 0.970270i \(-0.577812\pi\)
−0.242026 + 0.970270i \(0.577812\pi\)
\(774\) 0 0
\(775\) 2.52243 0.0906084
\(776\) 29.4420 1.05691
\(777\) 0 0
\(778\) 8.71598 0.312483
\(779\) −4.25853 −0.152578
\(780\) 0 0
\(781\) 39.3223 1.40706
\(782\) −0.222544 −0.00795815
\(783\) 0 0
\(784\) 13.7863 0.492367
\(785\) −0.686807 −0.0245132
\(786\) 0 0
\(787\) 23.8454 0.849998 0.424999 0.905194i \(-0.360274\pi\)
0.424999 + 0.905194i \(0.360274\pi\)
\(788\) −37.4888 −1.33548
\(789\) 0 0
\(790\) 1.01138 0.0359834
\(791\) −3.21044 −0.114150
\(792\) 0 0
\(793\) 46.4321 1.64885
\(794\) −4.07189 −0.144506
\(795\) 0 0
\(796\) 14.2863 0.506364
\(797\) 30.5648 1.08266 0.541330 0.840810i \(-0.317921\pi\)
0.541330 + 0.840810i \(0.317921\pi\)
\(798\) 0 0
\(799\) 0.994725 0.0351908
\(800\) −4.57533 −0.161762
\(801\) 0 0
\(802\) 12.0178 0.424363
\(803\) 19.5022 0.688218
\(804\) 0 0
\(805\) 11.9111 0.419811
\(806\) −4.76419 −0.167811
\(807\) 0 0
\(808\) −12.5516 −0.441564
\(809\) 48.7186 1.71285 0.856427 0.516268i \(-0.172679\pi\)
0.856427 + 0.516268i \(0.172679\pi\)
\(810\) 0 0
\(811\) −53.9242 −1.89354 −0.946768 0.321917i \(-0.895673\pi\)
−0.946768 + 0.321917i \(0.895673\pi\)
\(812\) −65.0479 −2.28273
\(813\) 0 0
\(814\) 7.36585 0.258173
\(815\) −6.91549 −0.242239
\(816\) 0 0
\(817\) 8.29463 0.290192
\(818\) −3.80530 −0.133049
\(819\) 0 0
\(820\) 0.929769 0.0324689
\(821\) 40.9746 1.43002 0.715011 0.699113i \(-0.246422\pi\)
0.715011 + 0.699113i \(0.246422\pi\)
\(822\) 0 0
\(823\) −15.9332 −0.555397 −0.277699 0.960668i \(-0.589572\pi\)
−0.277699 + 0.960668i \(0.589572\pi\)
\(824\) 17.3013 0.602720
\(825\) 0 0
\(826\) 3.11745 0.108470
\(827\) 3.73538 0.129892 0.0649460 0.997889i \(-0.479312\pi\)
0.0649460 + 0.997889i \(0.479312\pi\)
\(828\) 0 0
\(829\) 14.0809 0.489051 0.244526 0.969643i \(-0.421368\pi\)
0.244526 + 0.969643i \(0.421368\pi\)
\(830\) 2.00216 0.0694962
\(831\) 0 0
\(832\) −16.5683 −0.574402
\(833\) −0.699937 −0.0242514
\(834\) 0 0
\(835\) −7.18000 −0.248474
\(836\) 52.9720 1.83208
\(837\) 0 0
\(838\) 2.34308 0.0809402
\(839\) 21.4882 0.741855 0.370928 0.928662i \(-0.379040\pi\)
0.370928 + 0.928662i \(0.379040\pi\)
\(840\) 0 0
\(841\) 80.7882 2.78580
\(842\) 14.9685 0.515847
\(843\) 0 0
\(844\) 34.0251 1.17119
\(845\) −5.87187 −0.201998
\(846\) 0 0
\(847\) 4.92214 0.169127
\(848\) 23.6400 0.811801
\(849\) 0 0
\(850\) 0.0640482 0.00219683
\(851\) 16.6929 0.572225
\(852\) 0 0
\(853\) 2.14185 0.0733354 0.0366677 0.999328i \(-0.488326\pi\)
0.0366677 + 0.999328i \(0.488326\pi\)
\(854\) −15.9300 −0.545114
\(855\) 0 0
\(856\) −2.05742 −0.0703213
\(857\) −18.4102 −0.628881 −0.314441 0.949277i \(-0.601817\pi\)
−0.314441 + 0.949277i \(0.601817\pi\)
\(858\) 0 0
\(859\) −17.0069 −0.580268 −0.290134 0.956986i \(-0.593700\pi\)
−0.290134 + 0.956986i \(0.593700\pi\)
\(860\) −1.81097 −0.0617537
\(861\) 0 0
\(862\) −6.71593 −0.228745
\(863\) −54.0541 −1.84002 −0.920011 0.391891i \(-0.871821\pi\)
−0.920011 + 0.391891i \(0.871821\pi\)
\(864\) 0 0
\(865\) 14.2811 0.485573
\(866\) −7.17791 −0.243915
\(867\) 0 0
\(868\) −15.6594 −0.531514
\(869\) 8.20335 0.278280
\(870\) 0 0
\(871\) −17.6798 −0.599056
\(872\) 32.1775 1.08967
\(873\) 0 0
\(874\) −12.5305 −0.423850
\(875\) −3.42802 −0.115888
\(876\) 0 0
\(877\) 18.8141 0.635308 0.317654 0.948207i \(-0.397105\pi\)
0.317654 + 0.948207i \(0.397105\pi\)
\(878\) 11.7565 0.396762
\(879\) 0 0
\(880\) −10.2322 −0.344929
\(881\) 16.0913 0.542129 0.271065 0.962561i \(-0.412624\pi\)
0.271065 + 0.962561i \(0.412624\pi\)
\(882\) 0 0
\(883\) −50.3274 −1.69365 −0.846825 0.531871i \(-0.821489\pi\)
−0.846825 + 0.531871i \(0.821489\pi\)
\(884\) 1.15895 0.0389797
\(885\) 0 0
\(886\) −0.801401 −0.0269236
\(887\) 50.7671 1.70459 0.852297 0.523058i \(-0.175209\pi\)
0.852297 + 0.523058i \(0.175209\pi\)
\(888\) 0 0
\(889\) 54.4126 1.82494
\(890\) −6.78612 −0.227471
\(891\) 0 0
\(892\) 23.6424 0.791605
\(893\) 56.0087 1.87426
\(894\) 0 0
\(895\) 10.1134 0.338055
\(896\) 37.0530 1.23785
\(897\) 0 0
\(898\) −5.32483 −0.177692
\(899\) 26.4300 0.881490
\(900\) 0 0
\(901\) −1.20022 −0.0399850
\(902\) −0.787160 −0.0262095
\(903\) 0 0
\(904\) −1.55174 −0.0516101
\(905\) 1.20863 0.0401762
\(906\) 0 0
\(907\) 19.1876 0.637115 0.318558 0.947904i \(-0.396802\pi\)
0.318558 + 0.947904i \(0.396802\pi\)
\(908\) 39.1171 1.29815
\(909\) 0 0
\(910\) 6.47460 0.214631
\(911\) −8.14924 −0.269996 −0.134998 0.990846i \(-0.543103\pi\)
−0.134998 + 0.990846i \(0.543103\pi\)
\(912\) 0 0
\(913\) 16.2396 0.537453
\(914\) −14.3277 −0.473917
\(915\) 0 0
\(916\) −5.21461 −0.172295
\(917\) 43.4496 1.43483
\(918\) 0 0
\(919\) 12.3979 0.408969 0.204484 0.978870i \(-0.434448\pi\)
0.204484 + 0.978870i \(0.434448\pi\)
\(920\) 5.75714 0.189807
\(921\) 0 0
\(922\) 9.17320 0.302103
\(923\) 48.4405 1.59444
\(924\) 0 0
\(925\) −4.80422 −0.157962
\(926\) −10.2904 −0.338165
\(927\) 0 0
\(928\) −47.9403 −1.57372
\(929\) 13.5123 0.443324 0.221662 0.975124i \(-0.428852\pi\)
0.221662 + 0.975124i \(0.428852\pi\)
\(930\) 0 0
\(931\) −39.4104 −1.29162
\(932\) 41.2335 1.35065
\(933\) 0 0
\(934\) 7.77313 0.254344
\(935\) 0.519497 0.0169894
\(936\) 0 0
\(937\) −12.6732 −0.414017 −0.207008 0.978339i \(-0.566373\pi\)
−0.207008 + 0.978339i \(0.566373\pi\)
\(938\) 6.06561 0.198049
\(939\) 0 0
\(940\) −12.2284 −0.398847
\(941\) −43.4722 −1.41715 −0.708576 0.705635i \(-0.750662\pi\)
−0.708576 + 0.705635i \(0.750662\pi\)
\(942\) 0 0
\(943\) −1.78391 −0.0580919
\(944\) −6.06915 −0.197534
\(945\) 0 0
\(946\) 1.53320 0.0498487
\(947\) 13.6061 0.442139 0.221070 0.975258i \(-0.429045\pi\)
0.221070 + 0.975258i \(0.429045\pi\)
\(948\) 0 0
\(949\) 24.0245 0.779867
\(950\) 3.60628 0.117003
\(951\) 0 0
\(952\) −0.836731 −0.0271186
\(953\) 15.7134 0.509007 0.254503 0.967072i \(-0.418088\pi\)
0.254503 + 0.967072i \(0.418088\pi\)
\(954\) 0 0
\(955\) −11.7896 −0.381504
\(956\) −38.8851 −1.25763
\(957\) 0 0
\(958\) −5.55784 −0.179566
\(959\) −11.9862 −0.387056
\(960\) 0 0
\(961\) −24.6373 −0.794753
\(962\) 9.07387 0.292553
\(963\) 0 0
\(964\) 4.34320 0.139885
\(965\) −8.78628 −0.282840
\(966\) 0 0
\(967\) 32.8964 1.05788 0.528939 0.848660i \(-0.322590\pi\)
0.528939 + 0.848660i \(0.322590\pi\)
\(968\) 2.37908 0.0764664
\(969\) 0 0
\(970\) 7.72558 0.248054
\(971\) −20.8625 −0.669510 −0.334755 0.942305i \(-0.608654\pi\)
−0.334755 + 0.942305i \(0.608654\pi\)
\(972\) 0 0
\(973\) 10.2747 0.329391
\(974\) 1.43139 0.0458646
\(975\) 0 0
\(976\) 31.0130 0.992702
\(977\) −56.8435 −1.81858 −0.909292 0.416160i \(-0.863376\pi\)
−0.909292 + 0.416160i \(0.863376\pi\)
\(978\) 0 0
\(979\) −55.0424 −1.75916
\(980\) 8.60451 0.274861
\(981\) 0 0
\(982\) −4.89893 −0.156331
\(983\) −58.0603 −1.85184 −0.925918 0.377725i \(-0.876706\pi\)
−0.925918 + 0.377725i \(0.876706\pi\)
\(984\) 0 0
\(985\) −20.7009 −0.659587
\(986\) 0.671096 0.0213720
\(987\) 0 0
\(988\) 65.2554 2.07605
\(989\) 3.47463 0.110487
\(990\) 0 0
\(991\) −30.1239 −0.956916 −0.478458 0.878111i \(-0.658804\pi\)
−0.478458 + 0.878111i \(0.658804\pi\)
\(992\) −11.5410 −0.366426
\(993\) 0 0
\(994\) −16.6190 −0.527124
\(995\) 7.88873 0.250089
\(996\) 0 0
\(997\) 30.3566 0.961405 0.480702 0.876884i \(-0.340382\pi\)
0.480702 + 0.876884i \(0.340382\pi\)
\(998\) 12.4841 0.395177
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1935.2.a.u.1.3 5
3.2 odd 2 215.2.a.c.1.3 5
5.4 even 2 9675.2.a.ch.1.3 5
12.11 even 2 3440.2.a.w.1.2 5
15.2 even 4 1075.2.b.h.474.6 10
15.8 even 4 1075.2.b.h.474.5 10
15.14 odd 2 1075.2.a.m.1.3 5
129.128 even 2 9245.2.a.l.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
215.2.a.c.1.3 5 3.2 odd 2
1075.2.a.m.1.3 5 15.14 odd 2
1075.2.b.h.474.5 10 15.8 even 4
1075.2.b.h.474.6 10 15.2 even 4
1935.2.a.u.1.3 5 1.1 even 1 trivial
3440.2.a.w.1.2 5 12.11 even 2
9245.2.a.l.1.3 5 129.128 even 2
9675.2.a.ch.1.3 5 5.4 even 2