Related objects

Learn more about

Show commands for: Magma / SageMath

Decomposition of \( S_{8}^{\mathrm{new}}(18) \) into irreducible Hecke orbits

magma: S := CuspForms(18,8);
magma: N := Newforms(S);
sage: N = Newforms(18,8,names="a")
Label Dimension Field $q$-expansion of eigenform
18.8.1.a 1 \(\Q\) \(q \) \(\mathstrut-\) \(8q^{2} \) \(\mathstrut+\) \(64q^{4} \) \(\mathstrut+\) \(114q^{5} \) \(\mathstrut-\) \(1576q^{7} \) \(\mathstrut-\) \(512q^{8} \) \(\mathstrut+O(q^{10}) \)
18.8.1.b 1 \(\Q\) \(q \) \(\mathstrut+\) \(8q^{2} \) \(\mathstrut+\) \(64q^{4} \) \(\mathstrut+\) \(210q^{5} \) \(\mathstrut+\) \(1016q^{7} \) \(\mathstrut+\) \(512q^{8} \) \(\mathstrut+O(q^{10}) \)

Decomposition of \( S_{8}^{\mathrm{old}}(18) \) into lower level spaces

\( S_{8}^{\mathrm{old}}(18) \) \(\cong\) $ \href{ /ModularForm/GL2/Q/holomorphic/9/8/1/ }{ S^{ new }_{ 8 }(\Gamma_0(9)) }^{\oplus 2 }\oplus \href{ /ModularForm/GL2/Q/holomorphic/6/8/1/ }{ S^{ new }_{ 8 }(\Gamma_0(6)) }^{\oplus 2 }\oplus \href{ /ModularForm/GL2/Q/holomorphic/3/8/1/ }{ S^{ new }_{ 8 }(\Gamma_0(3)) }^{\oplus 4 }\oplus \href{ /ModularForm/GL2/Q/holomorphic/2/8/1/ }{ S^{ new }_{ 8 }(\Gamma_0(2)) }^{\oplus 3 } $