Properties

Label 4-544e2-1.1-c1e2-0-40
Degree $4$
Conductor $295936$
Sign $1$
Analytic cond. $18.8691$
Root an. cond. $2.08419$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·7-s − 6·9-s + 2·17-s − 8·23-s − 6·25-s − 8·31-s − 12·41-s + 34·49-s + 48·63-s + 8·71-s − 12·73-s − 24·79-s + 27·81-s + 20·89-s + 4·97-s − 16·103-s − 28·113-s − 16·119-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 12·153-s + 157-s + ⋯
L(s)  = 1  − 3.02·7-s − 2·9-s + 0.485·17-s − 1.66·23-s − 6/5·25-s − 1.43·31-s − 1.87·41-s + 34/7·49-s + 6.04·63-s + 0.949·71-s − 1.40·73-s − 2.70·79-s + 3·81-s + 2.11·89-s + 0.406·97-s − 1.57·103-s − 2.63·113-s − 1.46·119-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.970·153-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 295936 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 295936 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(295936\)    =    \(2^{10} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(18.8691\)
Root analytic conductor: \(2.08419\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 295936,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
17$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.535338766321817121127070704904, −7.86052886694471390828228448204, −7.50901244752622102880251473780, −6.64458936246770473314630815851, −6.48235693417520450637241002127, −6.04868829414574942081046284670, −5.50246131433375739774113763395, −5.37611913672208711896121353581, −3.94486422776053801827158365621, −3.78911546643884845747068338400, −3.06428895368232173582353504603, −2.88331668043848910381979864823, −1.98635588682742520402514989313, 0, 0, 1.98635588682742520402514989313, 2.88331668043848910381979864823, 3.06428895368232173582353504603, 3.78911546643884845747068338400, 3.94486422776053801827158365621, 5.37611913672208711896121353581, 5.50246131433375739774113763395, 6.04868829414574942081046284670, 6.48235693417520450637241002127, 6.64458936246770473314630815851, 7.50901244752622102880251473780, 7.86052886694471390828228448204, 8.535338766321817121127070704904

Graph of the $Z$-function along the critical line