Properties

Label 4-915e2-1.1-c1e2-0-28
Degree $4$
Conductor $837225$
Sign $-1$
Analytic cond. $53.3821$
Root an. cond. $2.70301$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s − 3·5-s + 9-s + 5·16-s + 12·19-s + 9·20-s + 4·25-s − 3·36-s − 18·41-s − 3·45-s − 5·49-s − 10·61-s − 3·64-s − 36·76-s − 15·80-s + 81-s − 36·95-s − 12·100-s + 22·109-s − 3·121-s + 3·125-s + 127-s + 131-s + 137-s + 139-s + 5·144-s + 149-s + ⋯
L(s)  = 1  − 3/2·4-s − 1.34·5-s + 1/3·9-s + 5/4·16-s + 2.75·19-s + 2.01·20-s + 4/5·25-s − 1/2·36-s − 2.81·41-s − 0.447·45-s − 5/7·49-s − 1.28·61-s − 3/8·64-s − 4.12·76-s − 1.67·80-s + 1/9·81-s − 3.69·95-s − 6/5·100-s + 2.10·109-s − 0.272·121-s + 0.268·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5/12·144-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 837225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 837225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(837225\)    =    \(3^{2} \cdot 5^{2} \cdot 61^{2}\)
Sign: $-1$
Analytic conductor: \(53.3821\)
Root analytic conductor: \(2.70301\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 837225,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_2$ \( 1 + 3 T + p T^{2} \)
61$C_2$ \( 1 + 10 T + p T^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 3 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 93 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 149 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 114 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.019705601658162368313782930300, −7.59525541153033948022717953496, −7.32797799246574372614296143278, −6.82355261140588630948200105590, −6.19665770243692771062088275851, −5.48372292315643443082616494394, −5.10014833933526035500158006766, −4.80604409903523102818660120535, −4.31083468335026787397617500846, −3.67127981302010446405898169929, −3.39753239660558066629224529274, −2.97813766484331641600779239042, −1.67112093006873605836011024535, −0.903557978499670931978921105460, 0, 0.903557978499670931978921105460, 1.67112093006873605836011024535, 2.97813766484331641600779239042, 3.39753239660558066629224529274, 3.67127981302010446405898169929, 4.31083468335026787397617500846, 4.80604409903523102818660120535, 5.10014833933526035500158006766, 5.48372292315643443082616494394, 6.19665770243692771062088275851, 6.82355261140588630948200105590, 7.32797799246574372614296143278, 7.59525541153033948022717953496, 8.019705601658162368313782930300

Graph of the $Z$-function along the critical line