Properties

Label 4-17280-1.1-c1e2-0-3
Degree $4$
Conductor $17280$
Sign $1$
Analytic cond. $1.10178$
Root an. cond. $1.02452$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 3·5-s − 6-s + 8-s + 9-s + 3·10-s − 12-s − 3·15-s + 16-s + 18-s + 3·20-s − 12·23-s − 24-s + 2·25-s − 27-s − 8·29-s − 3·30-s + 32-s + 36-s + 3·40-s + 12·43-s + 3·45-s − 12·46-s − 48-s + 6·49-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.948·10-s − 0.288·12-s − 0.774·15-s + 1/4·16-s + 0.235·18-s + 0.670·20-s − 2.50·23-s − 0.204·24-s + 2/5·25-s − 0.192·27-s − 1.48·29-s − 0.547·30-s + 0.176·32-s + 1/6·36-s + 0.474·40-s + 1.82·43-s + 0.447·45-s − 1.76·46-s − 0.144·48-s + 6/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17280 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17280 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(17280\)    =    \(2^{7} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(1.10178\)
Root analytic conductor: \(1.02452\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 17280,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.684534961\)
\(L(\frac12)\) \(\approx\) \(1.684534961\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
3$C_1$ \( 1 + T \)
5$C_1$$\times$$C_2$ \( ( 1 - T )( 1 - 2 T + p T^{2} ) \)
good7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 16 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 122 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.99351839993430246414427951188, −10.37772506144100212875288646617, −10.15914639422395200692225500995, −9.466310869162471744831857869431, −9.043180052806949082272619396875, −8.102222126098087303874229299528, −7.51159296698756849818980636470, −6.88600423079228429221319618667, −6.04713192253452202793297618763, −5.78856133280022125700095916440, −5.43432594163021746011280461785, −4.31761926207930601749254749266, −3.86444018024763414741997576626, −2.50583976800103525719285104860, −1.79002829831261169734649175248, 1.79002829831261169734649175248, 2.50583976800103525719285104860, 3.86444018024763414741997576626, 4.31761926207930601749254749266, 5.43432594163021746011280461785, 5.78856133280022125700095916440, 6.04713192253452202793297618763, 6.88600423079228429221319618667, 7.51159296698756849818980636470, 8.102222126098087303874229299528, 9.043180052806949082272619396875, 9.466310869162471744831857869431, 10.15914639422395200692225500995, 10.37772506144100212875288646617, 10.99351839993430246414427951188

Graph of the $Z$-function along the critical line