Properties

Label 4-376712-1.1-c1e2-0-0
Degree $4$
Conductor $376712$
Sign $-1$
Analytic cond. $24.0194$
Root an. cond. $2.21381$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·4-s + 2·6-s + 7-s − 5·9-s − 2·12-s − 4·13-s − 2·14-s − 4·16-s + 8·17-s + 10·18-s − 21-s + 2·25-s + 8·26-s + 8·27-s + 2·28-s − 5·31-s + 8·32-s − 16·34-s − 10·36-s + 4·39-s + 2·42-s + 4·48-s − 6·49-s − 4·50-s − 8·51-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s + 0.816·6-s + 0.377·7-s − 5/3·9-s − 0.577·12-s − 1.10·13-s − 0.534·14-s − 16-s + 1.94·17-s + 2.35·18-s − 0.218·21-s + 2/5·25-s + 1.56·26-s + 1.53·27-s + 0.377·28-s − 0.898·31-s + 1.41·32-s − 2.74·34-s − 5/3·36-s + 0.640·39-s + 0.308·42-s + 0.577·48-s − 6/7·49-s − 0.565·50-s − 1.12·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 376712 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 376712 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(376712\)    =    \(2^{3} \cdot 7^{2} \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(24.0194\)
Root analytic conductor: \(2.21381\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 376712,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
7$C_2$ \( 1 - T + p T^{2} \)
31$C_2$ \( 1 + 5 T + p T^{2} \)
good3$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
19$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 27 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 67 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 81 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 76 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 85 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 95 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.542261679545153034511562971660, −8.027484448136311172438005590303, −7.63660857316058925171011936563, −7.37259907961845724310157448571, −6.65325877714715521196587482512, −6.20965674234546691466533925303, −5.60085696382095652293964293735, −5.14717296640011951291422714465, −4.92490369052887204837084680332, −3.96024968567489685238146643741, −3.16070124367081256827512751772, −2.69168539466595962652570841749, −1.88104253334614448379493415708, −0.951078809257007125955417953695, 0, 0.951078809257007125955417953695, 1.88104253334614448379493415708, 2.69168539466595962652570841749, 3.16070124367081256827512751772, 3.96024968567489685238146643741, 4.92490369052887204837084680332, 5.14717296640011951291422714465, 5.60085696382095652293964293735, 6.20965674234546691466533925303, 6.65325877714715521196587482512, 7.37259907961845724310157448571, 7.63660857316058925171011936563, 8.027484448136311172438005590303, 8.542261679545153034511562971660

Graph of the $Z$-function along the critical line