Properties

Label 4-399e2-1.1-c1e2-0-31
Degree $4$
Conductor $159201$
Sign $-1$
Analytic cond. $10.1507$
Root an. cond. $1.78494$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 7-s + 9-s − 6·11-s − 6·13-s − 4·16-s + 2·19-s + 2·21-s + 3·25-s − 4·27-s − 6·31-s − 12·33-s − 12·39-s + 6·41-s − 6·43-s − 8·48-s − 6·49-s + 4·57-s − 6·59-s + 63-s + 6·75-s − 6·77-s − 11·81-s + 18·89-s − 6·91-s − 12·93-s − 2·97-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.377·7-s + 1/3·9-s − 1.80·11-s − 1.66·13-s − 16-s + 0.458·19-s + 0.436·21-s + 3/5·25-s − 0.769·27-s − 1.07·31-s − 2.08·33-s − 1.92·39-s + 0.937·41-s − 0.914·43-s − 1.15·48-s − 6/7·49-s + 0.529·57-s − 0.781·59-s + 0.125·63-s + 0.692·75-s − 0.683·77-s − 1.22·81-s + 1.90·89-s − 0.628·91-s − 1.24·93-s − 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 159201 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 159201 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(159201\)    =    \(3^{2} \cdot 7^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(10.1507\)
Root analytic conductor: \(1.78494\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 159201,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - 2 T + p T^{2} \)
7$C_2$ \( 1 - T + p T^{2} \)
19$C_2$ \( 1 - 2 T + p T^{2} \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
53$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 49 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.039979997014562825044265080554, −8.502603613321408717817349631996, −7.913940031173972780990697013470, −7.71443333380264699252993731176, −7.28656108977016870735590509908, −6.78060270001303809445259308973, −5.95916257479035645844689946425, −5.21308452939277172914953637630, −5.00451322451101784358612240250, −4.43529178939998421784590859097, −3.55119326228708525991147291262, −2.85047031852211250651651137569, −2.49336049098788615823286217953, −1.87615766237270307681991770414, 0, 1.87615766237270307681991770414, 2.49336049098788615823286217953, 2.85047031852211250651651137569, 3.55119326228708525991147291262, 4.43529178939998421784590859097, 5.00451322451101784358612240250, 5.21308452939277172914953637630, 5.95916257479035645844689946425, 6.78060270001303809445259308973, 7.28656108977016870735590509908, 7.71443333380264699252993731176, 7.913940031173972780990697013470, 8.502603613321408717817349631996, 9.039979997014562825044265080554

Graph of the $Z$-function along the critical line