Properties

Label 4-53067-1.1-c1e2-0-0
Degree $4$
Conductor $53067$
Sign $1$
Analytic cond. $3.38359$
Root an. cond. $1.35626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 6·13-s − 4·16-s + 2·19-s + 21-s − 3·25-s − 4·27-s + 6·31-s + 6·39-s + 18·41-s + 6·43-s − 4·48-s − 6·49-s + 2·57-s − 6·59-s − 3·75-s − 7·81-s − 6·89-s + 6·91-s + 6·93-s − 2·97-s − 8·103-s − 4·112-s − 13·121-s + 18·123-s + 127-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1.66·13-s − 16-s + 0.458·19-s + 0.218·21-s − 3/5·25-s − 0.769·27-s + 1.07·31-s + 0.960·39-s + 2.81·41-s + 0.914·43-s − 0.577·48-s − 6/7·49-s + 0.264·57-s − 0.781·59-s − 0.346·75-s − 7/9·81-s − 0.635·89-s + 0.628·91-s + 0.622·93-s − 0.203·97-s − 0.788·103-s − 0.377·112-s − 1.18·121-s + 1.62·123-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 53067 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 53067 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(53067\)    =    \(3 \cdot 7^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(3.38359\)
Root analytic conductor: \(1.35626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 53067,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.807526880\)
\(L(\frac12)\) \(\approx\) \(1.807526880\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 2 T + p T^{2} ) \)
7$C_2$ \( 1 - T + p T^{2} \)
19$C_2$ \( 1 - 2 T + p T^{2} \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2^2$ \( 1 + 3 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
17$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 45 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 78 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 49 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.888061006803556127374571312211, −9.466522626635243878693684080639, −8.973164621931283772702834547338, −8.623356283001451932952991887560, −7.85525762032585291198822353618, −7.76717014448676428230485244695, −6.95290562753375386571004987690, −6.19927100600041456160946888575, −5.95653307947299162749031324311, −5.14580057535760759859548538628, −4.26584870437055125896430495982, −3.98006768240938057592965446342, −3.04379632027667628601308769871, −2.33466536702483286392915406569, −1.26126154367783016011002136790, 1.26126154367783016011002136790, 2.33466536702483286392915406569, 3.04379632027667628601308769871, 3.98006768240938057592965446342, 4.26584870437055125896430495982, 5.14580057535760759859548538628, 5.95653307947299162749031324311, 6.19927100600041456160946888575, 6.95290562753375386571004987690, 7.76717014448676428230485244695, 7.85525762032585291198822353618, 8.623356283001451932952991887560, 8.973164621931283772702834547338, 9.466522626635243878693684080639, 9.888061006803556127374571312211

Graph of the $Z$-function along the critical line