Properties

Label 4-37349-1.1-c1e2-0-0
Degree $4$
Conductor $37349$
Sign $-1$
Analytic cond. $2.38140$
Root an. cond. $1.24224$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·3-s + 4-s + 13·9-s − 5·12-s − 13-s − 3·16-s − 17-s + 3·23-s + 7·25-s − 20·27-s − 11·29-s + 13·36-s + 5·39-s + 8·43-s + 15·48-s + 49-s + 5·51-s − 52-s − 14·53-s − 5·61-s − 7·64-s − 68-s − 15·69-s − 35·75-s − 10·79-s + 10·81-s + 55·87-s + ⋯
L(s)  = 1  − 2.88·3-s + 1/2·4-s + 13/3·9-s − 1.44·12-s − 0.277·13-s − 3/4·16-s − 0.242·17-s + 0.625·23-s + 7/5·25-s − 3.84·27-s − 2.04·29-s + 13/6·36-s + 0.800·39-s + 1.21·43-s + 2.16·48-s + 1/7·49-s + 0.700·51-s − 0.138·52-s − 1.92·53-s − 0.640·61-s − 7/8·64-s − 0.121·68-s − 1.80·69-s − 4.04·75-s − 1.12·79-s + 10/9·81-s + 5.89·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37349 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37349 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(37349\)    =    \(13^{3} \cdot 17\)
Sign: $-1$
Analytic conductor: \(2.38140\)
Root analytic conductor: \(1.24224\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 37349,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad13$C_1$ \( 1 + T \)
17$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 2 T + p T^{2} ) \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
3$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 43 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 80 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 5 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 36 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 59 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.59044501959644866767132722404, −9.674844609797841846358054299712, −9.277417665407585805027947316521, −8.576914825215962727607942877634, −7.51341240600202576695190822198, −7.18880659578063013328516195009, −6.64851863238724920504786965514, −6.16197865789512764318391536105, −5.77797745461673806148537077881, −5.00841943187520197105472149545, −4.85289720084871064985022363880, −3.98139969512858312145116457368, −2.71249778982484038202881000224, −1.37955483692025509929371250557, 0, 1.37955483692025509929371250557, 2.71249778982484038202881000224, 3.98139969512858312145116457368, 4.85289720084871064985022363880, 5.00841943187520197105472149545, 5.77797745461673806148537077881, 6.16197865789512764318391536105, 6.64851863238724920504786965514, 7.18880659578063013328516195009, 7.51341240600202576695190822198, 8.576914825215962727607942877634, 9.277417665407585805027947316521, 9.674844609797841846358054299712, 10.59044501959644866767132722404

Graph of the $Z$-function along the critical line