Properties

Label 4-444e2-1.1-c1e2-0-11
Degree $4$
Conductor $197136$
Sign $1$
Analytic cond. $12.5695$
Root an. cond. $1.88291$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s + 2·4-s + 6·6-s + 6·9-s − 10·11-s − 6·12-s − 4·13-s − 4·16-s − 12·18-s + 20·22-s + 4·23-s − 6·25-s + 8·26-s − 9·27-s + 8·32-s + 30·33-s + 12·36-s − 2·37-s + 12·39-s − 20·44-s − 8·46-s − 18·47-s + 12·48-s − 13·49-s + 12·50-s − 8·52-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.73·3-s + 4-s + 2.44·6-s + 2·9-s − 3.01·11-s − 1.73·12-s − 1.10·13-s − 16-s − 2.82·18-s + 4.26·22-s + 0.834·23-s − 6/5·25-s + 1.56·26-s − 1.73·27-s + 1.41·32-s + 5.22·33-s + 2·36-s − 0.328·37-s + 1.92·39-s − 3.01·44-s − 1.17·46-s − 2.62·47-s + 1.73·48-s − 1.85·49-s + 1.69·50-s − 1.10·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197136 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197136 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(197136\)    =    \(2^{4} \cdot 3^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(12.5695\)
Root analytic conductor: \(1.88291\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 197136,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
3$C_2$ \( 1 + p T + p T^{2} \)
37$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
47$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 15 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.411523075727323097878765523060, −8.014330807872879223418899196928, −7.85187058889734411022222226313, −7.20420824172938396254941904877, −6.87039121695443194852465216240, −6.30588286042335336353260552535, −5.52489447686531677812445208304, −5.10147923434552743490630958114, −5.00317001400665869534627315571, −4.25615660952913416427789271504, −3.02975166758349613305737908394, −2.38413465275342115890308840083, −1.51328298133418770573309670037, 0, 0, 1.51328298133418770573309670037, 2.38413465275342115890308840083, 3.02975166758349613305737908394, 4.25615660952913416427789271504, 5.00317001400665869534627315571, 5.10147923434552743490630958114, 5.52489447686531677812445208304, 6.30588286042335336353260552535, 6.87039121695443194852465216240, 7.20420824172938396254941904877, 7.85187058889734411022222226313, 8.014330807872879223418899196928, 8.411523075727323097878765523060

Graph of the $Z$-function along the critical line