Properties

Label 4-452e2-1.1-c1e2-0-6
Degree $4$
Conductor $204304$
Sign $-1$
Analytic cond. $13.0266$
Root an. cond. $1.89979$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·7-s + 8-s + 2·9-s − 6·11-s − 2·13-s − 2·14-s + 16-s + 2·18-s − 6·22-s − 4·25-s − 2·26-s − 2·28-s + 6·31-s + 32-s + 2·36-s − 8·41-s − 6·44-s − 10·49-s − 4·50-s − 2·52-s − 6·53-s − 2·56-s − 16·61-s + 6·62-s − 4·63-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.755·7-s + 0.353·8-s + 2/3·9-s − 1.80·11-s − 0.554·13-s − 0.534·14-s + 1/4·16-s + 0.471·18-s − 1.27·22-s − 4/5·25-s − 0.392·26-s − 0.377·28-s + 1.07·31-s + 0.176·32-s + 1/3·36-s − 1.24·41-s − 0.904·44-s − 1.42·49-s − 0.565·50-s − 0.277·52-s − 0.824·53-s − 0.267·56-s − 2.04·61-s + 0.762·62-s − 0.503·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 204304 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 204304 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(204304\)    =    \(2^{4} \cdot 113^{2}\)
Sign: $-1$
Analytic conductor: \(13.0266\)
Root analytic conductor: \(1.89979\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 204304,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
113$C_2$ \( 1 + 6 T + p T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
37$C_2^2$ \( 1 + 44 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 122 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2^2$ \( 1 + 126 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.788815138471885023988167837781, −8.145585223353684139184758662884, −7.86453140337875596672122410605, −7.37456268740768612871238353725, −6.87693994519191936158546934810, −6.35876366994336793845045705403, −5.87880191616178278555995682376, −5.31629747230410132333713822502, −4.70015150394815352026541727879, −4.50195428200827899320596033445, −3.50214828449880324343422352520, −3.07316307119561726841246213112, −2.47204509350364564322118684422, −1.65099944678956700174546558154, 0, 1.65099944678956700174546558154, 2.47204509350364564322118684422, 3.07316307119561726841246213112, 3.50214828449880324343422352520, 4.50195428200827899320596033445, 4.70015150394815352026541727879, 5.31629747230410132333713822502, 5.87880191616178278555995682376, 6.35876366994336793845045705403, 6.87693994519191936158546934810, 7.37456268740768612871238353725, 7.86453140337875596672122410605, 8.145585223353684139184758662884, 8.788815138471885023988167837781

Graph of the $Z$-function along the critical line