Properties

Label 2-98-7.2-c9-0-22
Degree $2$
Conductor $98$
Sign $-0.991 - 0.126i$
Analytic cond. $50.4735$
Root an. cond. $7.10447$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (8 − 13.8i)2-s + (−26.2 − 45.4i)3-s + (−127. − 221. i)4-s + (−918. + 1.59e3i)5-s − 839.·6-s − 4.09e3·8-s + (8.46e3 − 1.46e4i)9-s + (1.46e4 + 2.54e4i)10-s + (−4.69e3 − 8.12e3i)11-s + (−6.71e3 + 1.16e4i)12-s + 1.79e5·13-s + 9.63e4·15-s + (−3.27e4 + 5.67e4i)16-s + (−4.89e4 − 8.47e4i)17-s + (−1.35e5 − 2.34e5i)18-s + (−2.81e5 + 4.87e5i)19-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (−0.186 − 0.323i)3-s + (−0.249 − 0.433i)4-s + (−0.656 + 1.13i)5-s − 0.264·6-s − 0.353·8-s + (0.430 − 0.744i)9-s + (0.464 + 0.804i)10-s + (−0.0965 − 0.167i)11-s + (−0.0934 + 0.161i)12-s + 1.73·13-s + 0.491·15-s + (−0.125 + 0.216i)16-s + (−0.142 − 0.246i)17-s + (−0.304 − 0.526i)18-s + (−0.495 + 0.857i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(98\)    =    \(2 \cdot 7^{2}\)
Sign: $-0.991 - 0.126i$
Analytic conductor: \(50.4735\)
Root analytic conductor: \(7.10447\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{98} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 98,\ (\ :9/2),\ -0.991 - 0.126i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.0469621 + 0.740025i\)
\(L(\frac12)\) \(\approx\) \(0.0469621 + 0.740025i\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-8 + 13.8i)T \)
7 \( 1 \)
good3 \( 1 + (26.2 + 45.4i)T + (-9.84e3 + 1.70e4i)T^{2} \)
5 \( 1 + (918. - 1.59e3i)T + (-9.76e5 - 1.69e6i)T^{2} \)
11 \( 1 + (4.69e3 + 8.12e3i)T + (-1.17e9 + 2.04e9i)T^{2} \)
13 \( 1 - 1.79e5T + 1.06e10T^{2} \)
17 \( 1 + (4.89e4 + 8.47e4i)T + (-5.92e10 + 1.02e11i)T^{2} \)
19 \( 1 + (2.81e5 - 4.87e5i)T + (-1.61e11 - 2.79e11i)T^{2} \)
23 \( 1 + (-4.89e5 + 8.47e5i)T + (-9.00e11 - 1.55e12i)T^{2} \)
29 \( 1 + 4.31e6T + 1.45e13T^{2} \)
31 \( 1 + (3.98e6 + 6.90e6i)T + (-1.32e13 + 2.28e13i)T^{2} \)
37 \( 1 + (1.35e6 - 2.35e6i)T + (-6.49e13 - 1.12e14i)T^{2} \)
41 \( 1 - 9.00e6T + 3.27e14T^{2} \)
43 \( 1 + 3.47e7T + 5.02e14T^{2} \)
47 \( 1 + (2.10e7 - 3.65e7i)T + (-5.59e14 - 9.69e14i)T^{2} \)
53 \( 1 + (3.40e7 + 5.89e7i)T + (-1.64e15 + 2.85e15i)T^{2} \)
59 \( 1 + (-1.71e7 - 2.96e7i)T + (-4.33e15 + 7.50e15i)T^{2} \)
61 \( 1 + (-8.29e7 + 1.43e8i)T + (-5.84e15 - 1.01e16i)T^{2} \)
67 \( 1 + (1.21e8 + 2.10e8i)T + (-1.36e16 + 2.35e16i)T^{2} \)
71 \( 1 + 9.42e7T + 4.58e16T^{2} \)
73 \( 1 + (6.66e7 + 1.15e8i)T + (-2.94e16 + 5.09e16i)T^{2} \)
79 \( 1 + (3.38e8 - 5.86e8i)T + (-5.99e16 - 1.03e17i)T^{2} \)
83 \( 1 - 4.41e8T + 1.86e17T^{2} \)
89 \( 1 + (2.77e8 - 4.80e8i)T + (-1.75e17 - 3.03e17i)T^{2} \)
97 \( 1 + 1.26e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.31855184056856165271686270802, −10.95973079593935853432965952668, −9.617884401612617419639352086902, −8.181149747729665248080621555502, −6.81803619496454863687225560664, −5.95964825128259852391478032835, −3.99753945937354567011336196058, −3.27688060155362905524504852099, −1.63224912591420990443847144413, −0.18459320591626713600076540985, 1.42857469775110780677427407856, 3.67958321656040075682767319744, 4.63666548033610781262074518017, 5.59340208504674098739267949044, 7.11195215711600678956810975526, 8.320863445627822563897459330694, 9.023194539827363300857111353092, 10.67201287432332837609047181765, 11.66092480746053021312968043733, 13.06381578438607089333536963291

Graph of the $Z$-function along the critical line