Properties

Label 2-91-91.90-c8-0-34
Degree $2$
Conductor $91$
Sign $1$
Analytic cond. $37.0714$
Root an. cond. $6.08863$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 256·4-s − 431·5-s − 2.40e3·7-s + 6.56e3·9-s − 2.85e4·13-s + 6.55e4·16-s + 2.51e5·19-s − 1.10e5·20-s + 3.75e5·23-s − 2.04e5·25-s − 6.14e5·28-s − 1.06e6·29-s + 6.30e5·31-s + 1.03e6·35-s + 1.67e6·36-s − 4.09e5·41-s + 6.65e6·43-s − 2.82e6·45-s + 5.16e6·47-s + 5.76e6·49-s − 7.31e6·52-s + 1.33e7·53-s + 2.29e7·59-s − 1.57e7·63-s + 1.67e7·64-s + 1.23e7·65-s − 3.95e7·73-s + ⋯
L(s)  = 1  + 4-s − 0.689·5-s − 7-s + 9-s − 13-s + 16-s + 1.92·19-s − 0.689·20-s + 1.34·23-s − 0.524·25-s − 28-s − 1.50·29-s + 0.682·31-s + 0.689·35-s + 36-s − 0.145·41-s + 1.94·43-s − 0.689·45-s + 1.05·47-s + 49-s − 52-s + 1.68·53-s + 1.89·59-s − 63-s + 64-s + 0.689·65-s − 1.39·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91\)    =    \(7 \cdot 13\)
Sign: $1$
Analytic conductor: \(37.0714\)
Root analytic conductor: \(6.08863\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: $\chi_{91} (90, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 91,\ (\ :4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(2.202161262\)
\(L(\frac12)\) \(\approx\) \(2.202161262\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + p^{4} T \)
13 \( 1 + p^{4} T \)
good2 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
3 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
5 \( 1 + 431 T + p^{8} T^{2} \)
11 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
17 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
19 \( 1 - 251233 T + p^{8} T^{2} \)
23 \( 1 - 375407 T + p^{8} T^{2} \)
29 \( 1 + 1062913 T + p^{8} T^{2} \)
31 \( 1 - 630433 T + p^{8} T^{2} \)
37 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
41 \( 1 + 409922 T + p^{8} T^{2} \)
43 \( 1 - 6653327 T + p^{8} T^{2} \)
47 \( 1 - 5166913 T + p^{8} T^{2} \)
53 \( 1 - 13303487 T + p^{8} T^{2} \)
59 \( 1 - 22939678 T + p^{8} T^{2} \)
61 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
67 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
71 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
73 \( 1 + 39577007 T + p^{8} T^{2} \)
79 \( 1 + 14012113 T + p^{8} T^{2} \)
83 \( 1 + 37402367 T + p^{8} T^{2} \)
89 \( 1 + 4088207 T + p^{8} T^{2} \)
97 \( 1 - 174312913 T + p^{8} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.31537775761649252132434870378, −11.54896513405971253837390631262, −10.27438789189705580553115303707, −9.386378289406852433594706002212, −7.38458116143086261747259785992, −7.18918702351412774866563673639, −5.55960937461033205346154137753, −3.82530205555607426144551636715, −2.63090645296419318962016577961, −0.901905524650583925534898585636, 0.901905524650583925534898585636, 2.63090645296419318962016577961, 3.82530205555607426144551636715, 5.55960937461033205346154137753, 7.18918702351412774866563673639, 7.38458116143086261747259785992, 9.386378289406852433594706002212, 10.27438789189705580553115303707, 11.54896513405971253837390631262, 12.31537775761649252132434870378

Graph of the $Z$-function along the critical line