Properties

Label 4-800e2-1.1-c0e2-0-2
Degree $4$
Conductor $640000$
Sign $1$
Analytic cond. $0.159402$
Root an. cond. $0.631863$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s + 2·11-s − 2·19-s − 2·41-s − 2·49-s + 4·59-s + 2·89-s + 2·99-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s − 2·171-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 9-s + 2·11-s − 2·19-s − 2·41-s − 2·49-s + 4·59-s + 2·89-s + 2·99-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s − 2·171-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 640000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(640000\)    =    \(2^{10} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(0.159402\)
Root analytic conductor: \(0.631863\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 640000,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.048754437\)
\(L(\frac12)\) \(\approx\) \(1.048754437\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2$ \( ( 1 - T + T^{2} )^{2} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2^2$ \( 1 - T^{2} + T^{4} \)
19$C_2$ \( ( 1 + T + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
41$C_2$ \( ( 1 + T + T^{2} )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_1$ \( ( 1 - T )^{4} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_2^2$ \( 1 - T^{2} + T^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
73$C_2^2$ \( 1 - T^{2} + T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2^2$ \( 1 - T^{2} + T^{4} \)
89$C_2$ \( ( 1 - T + T^{2} )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.48192462057179431669655267948, −10.26471179692433523487791927714, −9.888970010120026042719453466201, −9.433726876346548985088267965846, −8.974148495807358145771356534967, −8.524658810398930347786710734400, −8.360859442106513473343411294213, −7.66976433374811804530926445176, −7.05938144605083630950688159385, −6.76979535282880298690896417891, −6.30808991530566763121933921838, −6.24893824838174372412763924405, −5.13329225274981955757854630763, −4.96042355551600179416120835091, −4.14552487292280802101351485904, −3.89058780516858376452091421139, −3.54888068522024869069231136553, −2.49032747626348307530879777677, −1.84068117969644956727528700491, −1.27683073765345448383954374058, 1.27683073765345448383954374058, 1.84068117969644956727528700491, 2.49032747626348307530879777677, 3.54888068522024869069231136553, 3.89058780516858376452091421139, 4.14552487292280802101351485904, 4.96042355551600179416120835091, 5.13329225274981955757854630763, 6.24893824838174372412763924405, 6.30808991530566763121933921838, 6.76979535282880298690896417891, 7.05938144605083630950688159385, 7.66976433374811804530926445176, 8.360859442106513473343411294213, 8.524658810398930347786710734400, 8.974148495807358145771356534967, 9.433726876346548985088267965846, 9.888970010120026042719453466201, 10.26471179692433523487791927714, 10.48192462057179431669655267948

Graph of the $Z$-function along the critical line