Properties

Label 2-670-67.9-c1-0-6
Degree $2$
Conductor $670$
Sign $0.877 - 0.480i$
Analytic cond. $5.34997$
Root an. cond. $2.31300$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.841 + 0.540i)2-s + (−2.27 − 0.666i)3-s + (0.415 + 0.909i)4-s + (0.654 − 0.755i)5-s + (−1.55 − 1.78i)6-s + (1.31 + 0.845i)7-s + (−0.142 + 0.989i)8-s + (2.18 + 1.40i)9-s + (0.959 − 0.281i)10-s + (−0.427 + 0.492i)11-s + (−0.336 − 2.34i)12-s + (0.331 + 2.30i)13-s + (0.649 + 1.42i)14-s + (−1.99 + 1.27i)15-s + (−0.654 + 0.755i)16-s + (2.58 − 5.65i)17-s + ⋯
L(s)  = 1  + (0.594 + 0.382i)2-s + (−1.31 − 0.385i)3-s + (0.207 + 0.454i)4-s + (0.292 − 0.337i)5-s + (−0.632 − 0.730i)6-s + (0.497 + 0.319i)7-s + (−0.0503 + 0.349i)8-s + (0.729 + 0.469i)9-s + (0.303 − 0.0890i)10-s + (−0.128 + 0.148i)11-s + (−0.0972 − 0.676i)12-s + (0.0920 + 0.639i)13-s + (0.173 + 0.380i)14-s + (−0.514 + 0.330i)15-s + (−0.163 + 0.188i)16-s + (0.625 − 1.37i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 670 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.877 - 0.480i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 670 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.877 - 0.480i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(670\)    =    \(2 \cdot 5 \cdot 67\)
Sign: $0.877 - 0.480i$
Analytic conductor: \(5.34997\)
Root analytic conductor: \(2.31300\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{670} (411, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 670,\ (\ :1/2),\ 0.877 - 0.480i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.47144 + 0.376257i\)
\(L(\frac12)\) \(\approx\) \(1.47144 + 0.376257i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.841 - 0.540i)T \)
5 \( 1 + (-0.654 + 0.755i)T \)
67 \( 1 + (5.97 + 5.58i)T \)
good3 \( 1 + (2.27 + 0.666i)T + (2.52 + 1.62i)T^{2} \)
7 \( 1 + (-1.31 - 0.845i)T + (2.90 + 6.36i)T^{2} \)
11 \( 1 + (0.427 - 0.492i)T + (-1.56 - 10.8i)T^{2} \)
13 \( 1 + (-0.331 - 2.30i)T + (-12.4 + 3.66i)T^{2} \)
17 \( 1 + (-2.58 + 5.65i)T + (-11.1 - 12.8i)T^{2} \)
19 \( 1 + (1.63 - 1.04i)T + (7.89 - 17.2i)T^{2} \)
23 \( 1 + (-7.64 - 2.24i)T + (19.3 + 12.4i)T^{2} \)
29 \( 1 - 7.98T + 29T^{2} \)
31 \( 1 + (0.508 - 3.53i)T + (-29.7 - 8.73i)T^{2} \)
37 \( 1 - 11.4T + 37T^{2} \)
41 \( 1 + (3.52 - 7.72i)T + (-26.8 - 30.9i)T^{2} \)
43 \( 1 + (0.759 - 1.66i)T + (-28.1 - 32.4i)T^{2} \)
47 \( 1 + (-6.10 - 1.79i)T + (39.5 + 25.4i)T^{2} \)
53 \( 1 + (-0.283 - 0.620i)T + (-34.7 + 40.0i)T^{2} \)
59 \( 1 + (0.107 - 0.744i)T + (-56.6 - 16.6i)T^{2} \)
61 \( 1 + (9.12 + 10.5i)T + (-8.68 + 60.3i)T^{2} \)
71 \( 1 + (-2.68 - 5.86i)T + (-46.4 + 53.6i)T^{2} \)
73 \( 1 + (2.66 + 3.08i)T + (-10.3 + 72.2i)T^{2} \)
79 \( 1 + (-0.308 - 2.14i)T + (-75.7 + 22.2i)T^{2} \)
83 \( 1 + (6.46 - 7.46i)T + (-11.8 - 82.1i)T^{2} \)
89 \( 1 + (-2.31 + 0.680i)T + (74.8 - 48.1i)T^{2} \)
97 \( 1 - 15.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.98234076414126501054410426478, −9.764121538875881134627320819836, −8.777733114117813223493029194180, −7.65746789316048570802663807655, −6.76703573178772815533789222220, −6.05430880093007205849700735580, −5.04864457113628359987860757419, −4.71248321163768062082519939481, −2.88249940870469002660809539713, −1.20355640715303988041943053623, 1.01606033738072011632945768466, 2.76313572832199018110399940854, 4.12982824493320254981805054711, 4.97109799641969496181175259859, 5.83328764437648188834175015238, 6.44217139006607395623496013541, 7.64073923373022193878950831881, 8.833183739408557531399609289029, 10.27594600352800538552170887092, 10.51175967030192221230757609914

Graph of the $Z$-function along the critical line