Properties

Label 2-667-23.13-c1-0-39
Degree $2$
Conductor $667$
Sign $-0.0526 + 0.998i$
Analytic cond. $5.32602$
Root an. cond. $2.30781$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.240 + 0.277i)2-s + (−0.500 − 0.321i)3-s + (0.265 − 1.84i)4-s + (−1.01 + 2.21i)5-s + (−0.0310 − 0.215i)6-s + (0.240 + 0.0707i)7-s + (1.19 − 0.766i)8-s + (−1.09 − 2.40i)9-s + (−0.858 + 0.251i)10-s + (−0.00585 + 0.00676i)11-s + (−0.726 + 0.838i)12-s + (1.01 − 0.297i)13-s + (0.0382 + 0.0837i)14-s + (1.21 − 0.783i)15-s + (−3.08 − 0.904i)16-s + (−0.511 − 3.55i)17-s + ⋯
L(s)  = 1  + (0.169 + 0.196i)2-s + (−0.288 − 0.185i)3-s + (0.132 − 0.923i)4-s + (−0.452 + 0.991i)5-s + (−0.0126 − 0.0881i)6-s + (0.0910 + 0.0267i)7-s + (0.421 − 0.271i)8-s + (−0.366 − 0.802i)9-s + (−0.271 + 0.0796i)10-s + (−0.00176 + 0.00203i)11-s + (−0.209 + 0.241i)12-s + (0.280 − 0.0824i)13-s + (0.0102 + 0.0223i)14-s + (0.314 − 0.202i)15-s + (−0.770 − 0.226i)16-s + (−0.123 − 0.862i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0526 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0526 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(667\)    =    \(23 \cdot 29\)
Sign: $-0.0526 + 0.998i$
Analytic conductor: \(5.32602\)
Root analytic conductor: \(2.30781\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{667} (59, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 667,\ (\ :1/2),\ -0.0526 + 0.998i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.770457 - 0.812126i\)
\(L(\frac12)\) \(\approx\) \(0.770457 - 0.812126i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad23 \( 1 + (0.375 + 4.78i)T \)
29 \( 1 + (-0.142 - 0.989i)T \)
good2 \( 1 + (-0.240 - 0.277i)T + (-0.284 + 1.97i)T^{2} \)
3 \( 1 + (0.500 + 0.321i)T + (1.24 + 2.72i)T^{2} \)
5 \( 1 + (1.01 - 2.21i)T + (-3.27 - 3.77i)T^{2} \)
7 \( 1 + (-0.240 - 0.0707i)T + (5.88 + 3.78i)T^{2} \)
11 \( 1 + (0.00585 - 0.00676i)T + (-1.56 - 10.8i)T^{2} \)
13 \( 1 + (-1.01 + 0.297i)T + (10.9 - 7.02i)T^{2} \)
17 \( 1 + (0.511 + 3.55i)T + (-16.3 + 4.78i)T^{2} \)
19 \( 1 + (-0.529 + 3.68i)T + (-18.2 - 5.35i)T^{2} \)
31 \( 1 + (-0.633 + 0.407i)T + (12.8 - 28.1i)T^{2} \)
37 \( 1 + (4.00 + 8.76i)T + (-24.2 + 27.9i)T^{2} \)
41 \( 1 + (-1.42 + 3.11i)T + (-26.8 - 30.9i)T^{2} \)
43 \( 1 + (4.05 + 2.60i)T + (17.8 + 39.1i)T^{2} \)
47 \( 1 - 1.23T + 47T^{2} \)
53 \( 1 + (-8.62 - 2.53i)T + (44.5 + 28.6i)T^{2} \)
59 \( 1 + (2.66 - 0.782i)T + (49.6 - 31.8i)T^{2} \)
61 \( 1 + (-7.85 + 5.05i)T + (25.3 - 55.4i)T^{2} \)
67 \( 1 + (8.84 + 10.2i)T + (-9.53 + 66.3i)T^{2} \)
71 \( 1 + (-9.96 - 11.5i)T + (-10.1 + 70.2i)T^{2} \)
73 \( 1 + (1.75 - 12.1i)T + (-70.0 - 20.5i)T^{2} \)
79 \( 1 + (3.41 - 1.00i)T + (66.4 - 42.7i)T^{2} \)
83 \( 1 + (0.780 + 1.70i)T + (-54.3 + 62.7i)T^{2} \)
89 \( 1 + (-12.2 - 7.87i)T + (36.9 + 80.9i)T^{2} \)
97 \( 1 + (4.96 - 10.8i)T + (-63.5 - 73.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.49875585805071663725105433430, −9.498685979904278709377510401299, −8.643674418648591944108362941582, −7.15841051561659197599097226396, −6.83660593177091917218768559373, −5.89591016685463099930037388547, −4.95568864124044409818775607366, −3.65585723613336005944947924920, −2.43779577992197790315674819548, −0.58934920034658858888117288950, 1.72483749248047598517538628766, 3.27307868779499724170732195913, 4.28118572889960103546565887344, 5.03506405216783997189243929626, 6.15562756257674622297138601710, 7.51037127293693742184987051140, 8.233220702840862931755740532843, 8.682866088764389672437719724709, 9.989195471124021510255569465874, 10.92633113965543423066526399648

Graph of the $Z$-function along the critical line