Properties

Label 2-5e4-1.1-c7-0-262
Degree $2$
Conductor $625$
Sign $-1$
Analytic cond. $195.240$
Root an. cond. $13.9728$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 15.3·2-s + 73.3·3-s + 108.·4-s + 1.12e3·6-s − 700.·7-s − 301.·8-s + 3.18e3·9-s − 2.68e3·11-s + 7.94e3·12-s + 3.01e3·13-s − 1.07e4·14-s − 1.85e4·16-s + 2.92e4·17-s + 4.90e4·18-s − 2.86e4·19-s − 5.13e4·21-s − 4.13e4·22-s − 6.82e4·23-s − 2.21e4·24-s + 4.63e4·26-s + 7.33e4·27-s − 7.58e4·28-s − 1.89e5·29-s − 2.27e5·31-s − 2.45e5·32-s − 1.96e5·33-s + 4.50e5·34-s + ⋯
L(s)  = 1  + 1.35·2-s + 1.56·3-s + 0.846·4-s + 2.13·6-s − 0.771·7-s − 0.208·8-s + 1.45·9-s − 0.608·11-s + 1.32·12-s + 0.380·13-s − 1.04·14-s − 1.12·16-s + 1.44·17-s + 1.98·18-s − 0.959·19-s − 1.20·21-s − 0.827·22-s − 1.17·23-s − 0.326·24-s + 0.517·26-s + 0.717·27-s − 0.653·28-s − 1.44·29-s − 1.36·31-s − 1.32·32-s − 0.954·33-s + 1.96·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(625\)    =    \(5^{4}\)
Sign: $-1$
Analytic conductor: \(195.240\)
Root analytic conductor: \(13.9728\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 625,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
good2 \( 1 - 15.3T + 128T^{2} \)
3 \( 1 - 73.3T + 2.18e3T^{2} \)
7 \( 1 + 700.T + 8.23e5T^{2} \)
11 \( 1 + 2.68e3T + 1.94e7T^{2} \)
13 \( 1 - 3.01e3T + 6.27e7T^{2} \)
17 \( 1 - 2.92e4T + 4.10e8T^{2} \)
19 \( 1 + 2.86e4T + 8.93e8T^{2} \)
23 \( 1 + 6.82e4T + 3.40e9T^{2} \)
29 \( 1 + 1.89e5T + 1.72e10T^{2} \)
31 \( 1 + 2.27e5T + 2.75e10T^{2} \)
37 \( 1 + 1.54e5T + 9.49e10T^{2} \)
41 \( 1 - 5.40e5T + 1.94e11T^{2} \)
43 \( 1 - 7.83e4T + 2.71e11T^{2} \)
47 \( 1 + 8.12e5T + 5.06e11T^{2} \)
53 \( 1 - 2.00e6T + 1.17e12T^{2} \)
59 \( 1 + 2.32e6T + 2.48e12T^{2} \)
61 \( 1 - 2.37e6T + 3.14e12T^{2} \)
67 \( 1 - 6.36e5T + 6.06e12T^{2} \)
71 \( 1 + 3.52e6T + 9.09e12T^{2} \)
73 \( 1 + 5.03e5T + 1.10e13T^{2} \)
79 \( 1 - 2.76e5T + 1.92e13T^{2} \)
83 \( 1 - 8.32e6T + 2.71e13T^{2} \)
89 \( 1 - 9.19e6T + 4.42e13T^{2} \)
97 \( 1 + 1.73e5T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.075835711586107017875545241615, −8.102248169770386136267708262269, −7.32006264505967437070354204076, −6.14879261898838133210190819312, −5.35665643079692578083310920431, −3.94572440137224883853025381857, −3.60017194916969515652724312594, −2.71541566616299873773324590280, −1.86009665292831009027568730739, 0, 1.86009665292831009027568730739, 2.71541566616299873773324590280, 3.60017194916969515652724312594, 3.94572440137224883853025381857, 5.35665643079692578083310920431, 6.14879261898838133210190819312, 7.32006264505967437070354204076, 8.102248169770386136267708262269, 9.075835711586107017875545241615

Graph of the $Z$-function along the critical line